Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{y^{4}-4yz^{3}+8076y+z^{4}-4zy^{3}+8076z-6\left(yz\right)^{2}}-y^{2}-z^{2}}{2\left(y+z\right)}\text{; }x=-\frac{\sqrt{y^{4}-4yz^{3}+8076y+z^{4}-4zy^{3}+8076z-6\left(yz\right)^{2}}+y^{2}+z^{2}}{2\left(y+z\right)}\text{, }&y\neq -z\text{ and }y^{4}-6y^{2}z^{2}-4yz^{3}+8076y+z^{4}-4zy^{3}+8076z\geq 0\\x=\frac{2019}{2y^{2}}\text{, }&z=-y\text{ and }y\neq 0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{\sqrt{x^{4}-4xz^{3}+8076x+z^{4}-4zx^{3}+8076z-6\left(xz\right)^{2}}-x^{2}-z^{2}}{2\left(x+z\right)}\text{; }y=-\frac{\sqrt{x^{4}-4xz^{3}+8076x+z^{4}-4zx^{3}+8076z-6\left(xz\right)^{2}}+x^{2}+z^{2}}{2\left(x+z\right)}\text{, }&x\neq -z\text{ and }x^{4}-6x^{2}z^{2}-4xz^{3}+8076x+z^{4}-4zx^{3}+8076z\geq 0\\y=\frac{2019}{2x^{2}}\text{, }&z=-x\text{ and }x\neq 0\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}