Solve for x
x=3
x=4
Graph
Share
Copied to clipboard
x^{2}\times 4-28x+48=0
Use the distributive property to multiply -4 by 7x-12.
x^{2}-7x+12=0
Divide both sides by 4.
a+b=-7 ab=1\times 12=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-4 b=-3
The solution is the pair that gives sum -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Rewrite x^{2}-7x+12 as \left(x^{2}-4x\right)+\left(-3x+12\right).
x\left(x-4\right)-3\left(x-4\right)
Factor out x in the first and -3 in the second group.
\left(x-4\right)\left(x-3\right)
Factor out common term x-4 by using distributive property.
x=4 x=3
To find equation solutions, solve x-4=0 and x-3=0.
x^{2}\times 4-28x+48=0
Use the distributive property to multiply -4 by 7x-12.
4x^{2}-28x+48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 4\times 48}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -28 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 4\times 48}}{2\times 4}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-16\times 48}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-28\right)±\sqrt{784-768}}{2\times 4}
Multiply -16 times 48.
x=\frac{-\left(-28\right)±\sqrt{16}}{2\times 4}
Add 784 to -768.
x=\frac{-\left(-28\right)±4}{2\times 4}
Take the square root of 16.
x=\frac{28±4}{2\times 4}
The opposite of -28 is 28.
x=\frac{28±4}{8}
Multiply 2 times 4.
x=\frac{32}{8}
Now solve the equation x=\frac{28±4}{8} when ± is plus. Add 28 to 4.
x=4
Divide 32 by 8.
x=\frac{24}{8}
Now solve the equation x=\frac{28±4}{8} when ± is minus. Subtract 4 from 28.
x=3
Divide 24 by 8.
x=4 x=3
The equation is now solved.
x^{2}\times 4-28x+48=0
Use the distributive property to multiply -4 by 7x-12.
x^{2}\times 4-28x=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
4x^{2}-28x=-48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-28x}{4}=-\frac{48}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{28}{4}\right)x=-\frac{48}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-7x=-\frac{48}{4}
Divide -28 by 4.
x^{2}-7x=-12
Divide -48 by 4.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
Add -12 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Simplify.
x=4 x=3
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}