Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-2=-\frac{9}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-x-2-\left(-\frac{9}{4}\right)=-\frac{9}{4}-\left(-\frac{9}{4}\right)
Add \frac{9}{4} to both sides of the equation.
x^{2}-x-2-\left(-\frac{9}{4}\right)=0
Subtracting -\frac{9}{4} from itself leaves 0.
x^{2}-x+\frac{1}{4}=0
Subtract -\frac{9}{4} from -2.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{4}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and \frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-1}}{2}
Multiply -4 times \frac{1}{4}.
x=\frac{-\left(-1\right)±\sqrt{0}}{2}
Add 1 to -1.
x=-\frac{-1}{2}
Take the square root of 0.
x=\frac{1}{2}
The opposite of -1 is 1.
x^{2}-x-2=-\frac{9}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-x-2-\left(-2\right)=-\frac{9}{4}-\left(-2\right)
Add 2 to both sides of the equation.
x^{2}-x=-\frac{9}{4}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x^{2}-x=-\frac{1}{4}
Subtract -2 from -\frac{9}{4}.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{-1+1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=0
Add -\frac{1}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=0
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{2}=0 x-\frac{1}{2}=0
Simplify.
x=\frac{1}{2} x=\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
x=\frac{1}{2}
The equation is now solved. Solutions are the same.