Solve for θ (complex solution)
\theta =\frac{\log_{x}\left(x^{2}-x-1\right)}{2}+\frac{\pi n_{1}i}{\ln(x)}
n_{1}\in \mathrm{Z}
x\neq \frac{\sqrt{5}+1}{2}\text{ and }x\neq \frac{1-\sqrt{5}}{2}\text{ and }x\neq 1\text{ and }x\neq 0
Solve for θ
\left\{\begin{matrix}\theta =\frac{\log_{x}\left(x^{2}-x-1\right)}{2}\text{, }&x>\frac{\sqrt{5}+1}{2}\\\theta \in \mathrm{R}\text{, }&Numerator(\theta )\text{bmod}2=1\text{ and }x=-1\text{ and }Denominator(\theta )\text{bmod}2=1\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}