Solve for x
x=\frac{17\sqrt{10}}{100}+\frac{1}{2}\approx 1.037587202
x=-\frac{17\sqrt{10}}{100}+\frac{1}{2}\approx -0.037587202
Graph
Share
Copied to clipboard
x^{2}-x-\frac{39}{1000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{39}{1000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -\frac{39}{1000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+\frac{39}{250}}}{2}
Multiply -4 times -\frac{39}{1000}.
x=\frac{-\left(-1\right)±\sqrt{\frac{289}{250}}}{2}
Add 1 to \frac{39}{250}.
x=\frac{-\left(-1\right)±\frac{17\sqrt{10}}{50}}{2}
Take the square root of \frac{289}{250}.
x=\frac{1±\frac{17\sqrt{10}}{50}}{2}
The opposite of -1 is 1.
x=\frac{\frac{17\sqrt{10}}{50}+1}{2}
Now solve the equation x=\frac{1±\frac{17\sqrt{10}}{50}}{2} when ± is plus. Add 1 to \frac{17\sqrt{10}}{50}.
x=\frac{17\sqrt{10}}{100}+\frac{1}{2}
Divide 1+\frac{17\sqrt{10}}{50} by 2.
x=\frac{-\frac{17\sqrt{10}}{50}+1}{2}
Now solve the equation x=\frac{1±\frac{17\sqrt{10}}{50}}{2} when ± is minus. Subtract \frac{17\sqrt{10}}{50} from 1.
x=-\frac{17\sqrt{10}}{100}+\frac{1}{2}
Divide 1-\frac{17\sqrt{10}}{50} by 2.
x=\frac{17\sqrt{10}}{100}+\frac{1}{2} x=-\frac{17\sqrt{10}}{100}+\frac{1}{2}
The equation is now solved.
x^{2}-x-\frac{39}{1000}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-x-\frac{39}{1000}-\left(-\frac{39}{1000}\right)=-\left(-\frac{39}{1000}\right)
Add \frac{39}{1000} to both sides of the equation.
x^{2}-x=-\left(-\frac{39}{1000}\right)
Subtracting -\frac{39}{1000} from itself leaves 0.
x^{2}-x=\frac{39}{1000}
Subtract -\frac{39}{1000} from 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{39}{1000}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{39}{1000}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{289}{1000}
Add \frac{39}{1000} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{289}{1000}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{289}{1000}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{17\sqrt{10}}{100} x-\frac{1}{2}=-\frac{17\sqrt{10}}{100}
Simplify.
x=\frac{17\sqrt{10}}{100}+\frac{1}{2} x=-\frac{17\sqrt{10}}{100}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}