Solve for x
x=\sqrt{10}\approx 3.16227766
x=-\sqrt{10}\approx -3.16227766
Graph
Share
Copied to clipboard
\left(x^{2}-9\right)^{2}=\left(\sqrt{11-x^{2}}\right)^{2}
Square both sides of the equation.
\left(x^{2}\right)^{2}-18x^{2}+81=\left(\sqrt{11-x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-9\right)^{2}.
x^{4}-18x^{2}+81=\left(\sqrt{11-x^{2}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-18x^{2}+81=11-x^{2}
Calculate \sqrt{11-x^{2}} to the power of 2 and get 11-x^{2}.
x^{4}-18x^{2}+81-11=-x^{2}
Subtract 11 from both sides.
x^{4}-18x^{2}+70=-x^{2}
Subtract 11 from 81 to get 70.
x^{4}-18x^{2}+70+x^{2}=0
Add x^{2} to both sides.
x^{4}-17x^{2}+70=0
Combine -18x^{2} and x^{2} to get -17x^{2}.
t^{2}-17t+70=0
Substitute t for x^{2}.
t=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 1\times 70}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -17 for b, and 70 for c in the quadratic formula.
t=\frac{17±3}{2}
Do the calculations.
t=10 t=7
Solve the equation t=\frac{17±3}{2} when ± is plus and when ± is minus.
x=\sqrt{10} x=-\sqrt{10} x=\sqrt{7} x=-\sqrt{7}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(\sqrt{10}\right)^{2}-9=\sqrt{11-\left(\sqrt{10}\right)^{2}}
Substitute \sqrt{10} for x in the equation x^{2}-9=\sqrt{11-x^{2}}.
1=1
Simplify. The value x=\sqrt{10} satisfies the equation.
\left(-\sqrt{10}\right)^{2}-9=\sqrt{11-\left(-\sqrt{10}\right)^{2}}
Substitute -\sqrt{10} for x in the equation x^{2}-9=\sqrt{11-x^{2}}.
1=1
Simplify. The value x=-\sqrt{10} satisfies the equation.
\left(\sqrt{7}\right)^{2}-9=\sqrt{11-\left(\sqrt{7}\right)^{2}}
Substitute \sqrt{7} for x in the equation x^{2}-9=\sqrt{11-x^{2}}.
-2=2
Simplify. The value x=\sqrt{7} does not satisfy the equation because the left and the right hand side have opposite signs.
\left(-\sqrt{7}\right)^{2}-9=\sqrt{11-\left(-\sqrt{7}\right)^{2}}
Substitute -\sqrt{7} for x in the equation x^{2}-9=\sqrt{11-x^{2}}.
-2=2
Simplify. The value x=-\sqrt{7} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\sqrt{10} x=-\sqrt{10}
List all solutions of x^{2}-9=\sqrt{11-x^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}