Solve for x
x=-32
x=40
Graph
Share
Copied to clipboard
a+b=-8 ab=-1280
To solve the equation, factor x^{2}-8x-1280 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-1280 2,-640 4,-320 5,-256 8,-160 10,-128 16,-80 20,-64 32,-40
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -1280.
1-1280=-1279 2-640=-638 4-320=-316 5-256=-251 8-160=-152 10-128=-118 16-80=-64 20-64=-44 32-40=-8
Calculate the sum for each pair.
a=-40 b=32
The solution is the pair that gives sum -8.
\left(x-40\right)\left(x+32\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=40 x=-32
To find equation solutions, solve x-40=0 and x+32=0.
a+b=-8 ab=1\left(-1280\right)=-1280
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-1280. To find a and b, set up a system to be solved.
1,-1280 2,-640 4,-320 5,-256 8,-160 10,-128 16,-80 20,-64 32,-40
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -1280.
1-1280=-1279 2-640=-638 4-320=-316 5-256=-251 8-160=-152 10-128=-118 16-80=-64 20-64=-44 32-40=-8
Calculate the sum for each pair.
a=-40 b=32
The solution is the pair that gives sum -8.
\left(x^{2}-40x\right)+\left(32x-1280\right)
Rewrite x^{2}-8x-1280 as \left(x^{2}-40x\right)+\left(32x-1280\right).
x\left(x-40\right)+32\left(x-40\right)
Factor out x in the first and 32 in the second group.
\left(x-40\right)\left(x+32\right)
Factor out common term x-40 by using distributive property.
x=40 x=-32
To find equation solutions, solve x-40=0 and x+32=0.
x^{2}-8x-1280=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1280\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -1280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1280\right)}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+5120}}{2}
Multiply -4 times -1280.
x=\frac{-\left(-8\right)±\sqrt{5184}}{2}
Add 64 to 5120.
x=\frac{-\left(-8\right)±72}{2}
Take the square root of 5184.
x=\frac{8±72}{2}
The opposite of -8 is 8.
x=\frac{80}{2}
Now solve the equation x=\frac{8±72}{2} when ± is plus. Add 8 to 72.
x=40
Divide 80 by 2.
x=-\frac{64}{2}
Now solve the equation x=\frac{8±72}{2} when ± is minus. Subtract 72 from 8.
x=-32
Divide -64 by 2.
x=40 x=-32
The equation is now solved.
x^{2}-8x-1280=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-8x-1280-\left(-1280\right)=-\left(-1280\right)
Add 1280 to both sides of the equation.
x^{2}-8x=-\left(-1280\right)
Subtracting -1280 from itself leaves 0.
x^{2}-8x=1280
Subtract -1280 from 0.
x^{2}-8x+\left(-4\right)^{2}=1280+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=1280+16
Square -4.
x^{2}-8x+16=1296
Add 1280 to 16.
\left(x-4\right)^{2}=1296
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1296}
Take the square root of both sides of the equation.
x-4=36 x-4=-36
Simplify.
x=40 x=-32
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}