Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x-1029=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1029\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -1029 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1029\right)}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4116}}{2}
Multiply -4 times -1029.
x=\frac{-\left(-8\right)±\sqrt{4180}}{2}
Add 64 to 4116.
x=\frac{-\left(-8\right)±2\sqrt{1045}}{2}
Take the square root of 4180.
x=\frac{8±2\sqrt{1045}}{2}
The opposite of -8 is 8.
x=\frac{2\sqrt{1045}+8}{2}
Now solve the equation x=\frac{8±2\sqrt{1045}}{2} when ± is plus. Add 8 to 2\sqrt{1045}.
x=\sqrt{1045}+4
Divide 8+2\sqrt{1045} by 2.
x=\frac{8-2\sqrt{1045}}{2}
Now solve the equation x=\frac{8±2\sqrt{1045}}{2} when ± is minus. Subtract 2\sqrt{1045} from 8.
x=4-\sqrt{1045}
Divide 8-2\sqrt{1045} by 2.
x=\sqrt{1045}+4 x=4-\sqrt{1045}
The equation is now solved.
x^{2}-8x-1029=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-8x-1029-\left(-1029\right)=-\left(-1029\right)
Add 1029 to both sides of the equation.
x^{2}-8x=-\left(-1029\right)
Subtracting -1029 from itself leaves 0.
x^{2}-8x=1029
Subtract -1029 from 0.
x^{2}-8x+\left(-4\right)^{2}=1029+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=1029+16
Square -4.
x^{2}-8x+16=1045
Add 1029 to 16.
\left(x-4\right)^{2}=1045
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1045}
Take the square root of both sides of the equation.
x-4=\sqrt{1045} x-4=-\sqrt{1045}
Simplify.
x=\sqrt{1045}+4 x=4-\sqrt{1045}
Add 4 to both sides of the equation.