Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x-102.9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-102.9\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -102.9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-102.9\right)}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+411.6}}{2}
Multiply -4 times -102.9.
x=\frac{-\left(-8\right)±\sqrt{475.6}}{2}
Add 64 to 411.6.
x=\frac{-\left(-8\right)±\frac{\sqrt{11890}}{5}}{2}
Take the square root of 475.6.
x=\frac{8±\frac{\sqrt{11890}}{5}}{2}
The opposite of -8 is 8.
x=\frac{\frac{\sqrt{11890}}{5}+8}{2}
Now solve the equation x=\frac{8±\frac{\sqrt{11890}}{5}}{2} when ± is plus. Add 8 to \frac{\sqrt{11890}}{5}.
x=\frac{\sqrt{11890}}{10}+4
Divide 8+\frac{\sqrt{11890}}{5} by 2.
x=\frac{-\frac{\sqrt{11890}}{5}+8}{2}
Now solve the equation x=\frac{8±\frac{\sqrt{11890}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{11890}}{5} from 8.
x=-\frac{\sqrt{11890}}{10}+4
Divide 8-\frac{\sqrt{11890}}{5} by 2.
x=\frac{\sqrt{11890}}{10}+4 x=-\frac{\sqrt{11890}}{10}+4
The equation is now solved.
x^{2}-8x-102.9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-8x-102.9-\left(-102.9\right)=-\left(-102.9\right)
Add 102.9 to both sides of the equation.
x^{2}-8x=-\left(-102.9\right)
Subtracting -102.9 from itself leaves 0.
x^{2}-8x=102.9
Subtract -102.9 from 0.
x^{2}-8x+\left(-4\right)^{2}=102.9+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=102.9+16
Square -4.
x^{2}-8x+16=118.9
Add 102.9 to 16.
\left(x-4\right)^{2}=118.9
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{118.9}
Take the square root of both sides of the equation.
x-4=\frac{\sqrt{11890}}{10} x-4=-\frac{\sqrt{11890}}{10}
Simplify.
x=\frac{\sqrt{11890}}{10}+4 x=-\frac{\sqrt{11890}}{10}+4
Add 4 to both sides of the equation.