Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 14}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 14}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-56}}{2}
Multiply -4 times 14.
x=\frac{-\left(-8\right)±\sqrt{8}}{2}
Add 64 to -56.
x=\frac{-\left(-8\right)±2\sqrt{2}}{2}
Take the square root of 8.
x=\frac{8±2\sqrt{2}}{2}
The opposite of -8 is 8.
x=\frac{2\sqrt{2}+8}{2}
Now solve the equation x=\frac{8±2\sqrt{2}}{2} when ± is plus. Add 8 to 2\sqrt{2}.
x=\sqrt{2}+4
Divide 2\sqrt{2}+8 by 2.
x=\frac{8-2\sqrt{2}}{2}
Now solve the equation x=\frac{8±2\sqrt{2}}{2} when ± is minus. Subtract 2\sqrt{2} from 8.
x=4-\sqrt{2}
Divide 8-2\sqrt{2} by 2.
x^{2}-8x+14=\left(x-\left(\sqrt{2}+4\right)\right)\left(x-\left(4-\sqrt{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4+\sqrt{2} for x_{1} and 4-\sqrt{2} for x_{2}.