Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-8 ab=1\times 12=12
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-6 b=-2
The solution is the pair that gives sum -8.
\left(x^{2}-6x\right)+\left(-2x+12\right)
Rewrite x^{2}-8x+12 as \left(x^{2}-6x\right)+\left(-2x+12\right).
x\left(x-6\right)-2\left(x-6\right)
Factor out x in the first and -2 in the second group.
\left(x-6\right)\left(x-2\right)
Factor out common term x-6 by using distributive property.
x^{2}-8x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
Multiply -4 times 12.
x=\frac{-\left(-8\right)±\sqrt{16}}{2}
Add 64 to -48.
x=\frac{-\left(-8\right)±4}{2}
Take the square root of 16.
x=\frac{8±4}{2}
The opposite of -8 is 8.
x=\frac{12}{2}
Now solve the equation x=\frac{8±4}{2} when ± is plus. Add 8 to 4.
x=6
Divide 12 by 2.
x=\frac{4}{2}
Now solve the equation x=\frac{8±4}{2} when ± is minus. Subtract 4 from 8.
x=2
Divide 4 by 2.
x^{2}-8x+12=\left(x-6\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and 2 for x_{2}.