Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-810x+7800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-810\right)±\sqrt{\left(-810\right)^{2}-4\times 7800}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -810 for b, and 7800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-810\right)±\sqrt{656100-4\times 7800}}{2}
Square -810.
x=\frac{-\left(-810\right)±\sqrt{656100-31200}}{2}
Multiply -4 times 7800.
x=\frac{-\left(-810\right)±\sqrt{624900}}{2}
Add 656100 to -31200.
x=\frac{-\left(-810\right)±10\sqrt{6249}}{2}
Take the square root of 624900.
x=\frac{810±10\sqrt{6249}}{2}
The opposite of -810 is 810.
x=\frac{10\sqrt{6249}+810}{2}
Now solve the equation x=\frac{810±10\sqrt{6249}}{2} when ± is plus. Add 810 to 10\sqrt{6249}.
x=5\sqrt{6249}+405
Divide 810+10\sqrt{6249} by 2.
x=\frac{810-10\sqrt{6249}}{2}
Now solve the equation x=\frac{810±10\sqrt{6249}}{2} when ± is minus. Subtract 10\sqrt{6249} from 810.
x=405-5\sqrt{6249}
Divide 810-10\sqrt{6249} by 2.
x=5\sqrt{6249}+405 x=405-5\sqrt{6249}
The equation is now solved.
x^{2}-810x+7800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-810x+7800-7800=-7800
Subtract 7800 from both sides of the equation.
x^{2}-810x=-7800
Subtracting 7800 from itself leaves 0.
x^{2}-810x+\left(-405\right)^{2}=-7800+\left(-405\right)^{2}
Divide -810, the coefficient of the x term, by 2 to get -405. Then add the square of -405 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-810x+164025=-7800+164025
Square -405.
x^{2}-810x+164025=156225
Add -7800 to 164025.
\left(x-405\right)^{2}=156225
Factor x^{2}-810x+164025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-405\right)^{2}}=\sqrt{156225}
Take the square root of both sides of the equation.
x-405=5\sqrt{6249} x-405=-5\sqrt{6249}
Simplify.
x=5\sqrt{6249}+405 x=405-5\sqrt{6249}
Add 405 to both sides of the equation.