Factor
\left(x-50\right)\left(x-30\right)
Evaluate
\left(x-50\right)\left(x-30\right)
Graph
Share
Copied to clipboard
a+b=-80 ab=1\times 1500=1500
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+1500. To find a and b, set up a system to be solved.
-1,-1500 -2,-750 -3,-500 -4,-375 -5,-300 -6,-250 -10,-150 -12,-125 -15,-100 -20,-75 -25,-60 -30,-50
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 1500.
-1-1500=-1501 -2-750=-752 -3-500=-503 -4-375=-379 -5-300=-305 -6-250=-256 -10-150=-160 -12-125=-137 -15-100=-115 -20-75=-95 -25-60=-85 -30-50=-80
Calculate the sum for each pair.
a=-50 b=-30
The solution is the pair that gives sum -80.
\left(x^{2}-50x\right)+\left(-30x+1500\right)
Rewrite x^{2}-80x+1500 as \left(x^{2}-50x\right)+\left(-30x+1500\right).
x\left(x-50\right)-30\left(x-50\right)
Factor out x in the first and -30 in the second group.
\left(x-50\right)\left(x-30\right)
Factor out common term x-50 by using distributive property.
x^{2}-80x+1500=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 1500}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 1500}}{2}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-6000}}{2}
Multiply -4 times 1500.
x=\frac{-\left(-80\right)±\sqrt{400}}{2}
Add 6400 to -6000.
x=\frac{-\left(-80\right)±20}{2}
Take the square root of 400.
x=\frac{80±20}{2}
The opposite of -80 is 80.
x=\frac{100}{2}
Now solve the equation x=\frac{80±20}{2} when ± is plus. Add 80 to 20.
x=50
Divide 100 by 2.
x=\frac{60}{2}
Now solve the equation x=\frac{80±20}{2} when ± is minus. Subtract 20 from 80.
x=30
Divide 60 by 2.
x^{2}-80x+1500=\left(x-50\right)\left(x-30\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 50 for x_{1} and 30 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}