Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-7x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8}}{2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{41}}{2}
Add 49 to -8.
x=\frac{7±\sqrt{41}}{2}
The opposite of -7 is 7.
x=\frac{\sqrt{41}+7}{2}
Now solve the equation x=\frac{7±\sqrt{41}}{2} when ± is plus. Add 7 to \sqrt{41}.
x=\frac{7-\sqrt{41}}{2}
Now solve the equation x=\frac{7±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from 7.
x^{2}-7x+2=\left(x-\frac{\sqrt{41}+7}{2}\right)\left(x-\frac{7-\sqrt{41}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+\sqrt{41}}{2} for x_{1} and \frac{7-\sqrt{41}}{2} for x_{2}.