Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+8=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-6x+8-12=12-12
Subtract 12 from both sides of the equation.
x^{2}-6x+8-12=0
Subtracting 12 from itself leaves 0.
x^{2}-6x-4=0
Subtract 12 from 8.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-4\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+16}}{2}
Multiply -4 times -4.
x=\frac{-\left(-6\right)±\sqrt{52}}{2}
Add 36 to 16.
x=\frac{-\left(-6\right)±2\sqrt{13}}{2}
Take the square root of 52.
x=\frac{6±2\sqrt{13}}{2}
The opposite of -6 is 6.
x=\frac{2\sqrt{13}+6}{2}
Now solve the equation x=\frac{6±2\sqrt{13}}{2} when ± is plus. Add 6 to 2\sqrt{13}.
x=\sqrt{13}+3
Divide 6+2\sqrt{13} by 2.
x=\frac{6-2\sqrt{13}}{2}
Now solve the equation x=\frac{6±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from 6.
x=3-\sqrt{13}
Divide 6-2\sqrt{13} by 2.
x=\sqrt{13}+3 x=3-\sqrt{13}
The equation is now solved.
x^{2}-6x+8=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-6x+8-8=12-8
Subtract 8 from both sides of the equation.
x^{2}-6x=12-8
Subtracting 8 from itself leaves 0.
x^{2}-6x=4
Subtract 8 from 12.
x^{2}-6x+\left(-3\right)^{2}=4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=4+9
Square -3.
x^{2}-6x+9=13
Add 4 to 9.
\left(x-3\right)^{2}=13
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x-3=\sqrt{13} x-3=-\sqrt{13}
Simplify.
x=\sqrt{13}+3 x=3-\sqrt{13}
Add 3 to both sides of the equation.