Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x-6x=-24
Subtract 6x from both sides.
x^{2}-12x=-24
Combine -6x and -6x to get -12x.
x^{2}-12x+24=0
Add 24 to both sides.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 24}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 24}}{2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-96}}{2}
Multiply -4 times 24.
x=\frac{-\left(-12\right)±\sqrt{48}}{2}
Add 144 to -96.
x=\frac{-\left(-12\right)±4\sqrt{3}}{2}
Take the square root of 48.
x=\frac{12±4\sqrt{3}}{2}
The opposite of -12 is 12.
x=\frac{4\sqrt{3}+12}{2}
Now solve the equation x=\frac{12±4\sqrt{3}}{2} when ± is plus. Add 12 to 4\sqrt{3}.
x=2\sqrt{3}+6
Divide 12+4\sqrt{3} by 2.
x=\frac{12-4\sqrt{3}}{2}
Now solve the equation x=\frac{12±4\sqrt{3}}{2} when ± is minus. Subtract 4\sqrt{3} from 12.
x=6-2\sqrt{3}
Divide 12-4\sqrt{3} by 2.
x=2\sqrt{3}+6 x=6-2\sqrt{3}
The equation is now solved.
x^{2}-6x-6x=-24
Subtract 6x from both sides.
x^{2}-12x=-24
Combine -6x and -6x to get -12x.
x^{2}-12x+\left(-6\right)^{2}=-24+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-24+36
Square -6.
x^{2}-12x+36=12
Add -24 to 36.
\left(x-6\right)^{2}=12
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x-6=2\sqrt{3} x-6=-2\sqrt{3}
Simplify.
x=2\sqrt{3}+6 x=6-2\sqrt{3}
Add 6 to both sides of the equation.