Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-5 ab=-50
To solve the equation, factor x^{2}-5x-50 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-50 2,-25 5,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -50.
1-50=-49 2-25=-23 5-10=-5
Calculate the sum for each pair.
a=-10 b=5
The solution is the pair that gives sum -5.
\left(x-10\right)\left(x+5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=10 x=-5
To find equation solutions, solve x-10=0 and x+5=0.
a+b=-5 ab=1\left(-50\right)=-50
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-50. To find a and b, set up a system to be solved.
1,-50 2,-25 5,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -50.
1-50=-49 2-25=-23 5-10=-5
Calculate the sum for each pair.
a=-10 b=5
The solution is the pair that gives sum -5.
\left(x^{2}-10x\right)+\left(5x-50\right)
Rewrite x^{2}-5x-50 as \left(x^{2}-10x\right)+\left(5x-50\right).
x\left(x-10\right)+5\left(x-10\right)
Factor out x in the first and 5 in the second group.
\left(x-10\right)\left(x+5\right)
Factor out common term x-10 by using distributive property.
x=10 x=-5
To find equation solutions, solve x-10=0 and x+5=0.
x^{2}-5x-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-50\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-50\right)}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+200}}{2}
Multiply -4 times -50.
x=\frac{-\left(-5\right)±\sqrt{225}}{2}
Add 25 to 200.
x=\frac{-\left(-5\right)±15}{2}
Take the square root of 225.
x=\frac{5±15}{2}
The opposite of -5 is 5.
x=\frac{20}{2}
Now solve the equation x=\frac{5±15}{2} when ± is plus. Add 5 to 15.
x=10
Divide 20 by 2.
x=-\frac{10}{2}
Now solve the equation x=\frac{5±15}{2} when ± is minus. Subtract 15 from 5.
x=-5
Divide -10 by 2.
x=10 x=-5
The equation is now solved.
x^{2}-5x-50=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-5x-50-\left(-50\right)=-\left(-50\right)
Add 50 to both sides of the equation.
x^{2}-5x=-\left(-50\right)
Subtracting -50 from itself leaves 0.
x^{2}-5x=50
Subtract -50 from 0.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=50+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=50+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{225}{4}
Add 50 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{225}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{15}{2} x-\frac{5}{2}=-\frac{15}{2}
Simplify.
x=10 x=-5
Add \frac{5}{2} to both sides of the equation.