Solve for x
x=-4
x=9
Graph
Share
Copied to clipboard
a+b=-5 ab=-36
To solve the equation, factor x^{2}-5x-36 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=-9 b=4
The solution is the pair that gives sum -5.
\left(x-9\right)\left(x+4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=9 x=-4
To find equation solutions, solve x-9=0 and x+4=0.
a+b=-5 ab=1\left(-36\right)=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-36. To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=-9 b=4
The solution is the pair that gives sum -5.
\left(x^{2}-9x\right)+\left(4x-36\right)
Rewrite x^{2}-5x-36 as \left(x^{2}-9x\right)+\left(4x-36\right).
x\left(x-9\right)+4\left(x-9\right)
Factor out x in the first and 4 in the second group.
\left(x-9\right)\left(x+4\right)
Factor out common term x-9 by using distributive property.
x=9 x=-4
To find equation solutions, solve x-9=0 and x+4=0.
x^{2}-5x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Multiply -4 times -36.
x=\frac{-\left(-5\right)±\sqrt{169}}{2}
Add 25 to 144.
x=\frac{-\left(-5\right)±13}{2}
Take the square root of 169.
x=\frac{5±13}{2}
The opposite of -5 is 5.
x=\frac{18}{2}
Now solve the equation x=\frac{5±13}{2} when ± is plus. Add 5 to 13.
x=9
Divide 18 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{5±13}{2} when ± is minus. Subtract 13 from 5.
x=-4
Divide -8 by 2.
x=9 x=-4
The equation is now solved.
x^{2}-5x-36=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-5x-36-\left(-36\right)=-\left(-36\right)
Add 36 to both sides of the equation.
x^{2}-5x=-\left(-36\right)
Subtracting -36 from itself leaves 0.
x^{2}-5x=36
Subtract -36 from 0.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=36+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{169}{4}
Add 36 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{13}{2} x-\frac{5}{2}=-\frac{13}{2}
Simplify.
x=9 x=-4
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}