Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+30x-565=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-565\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 30 for b, and -565 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-565\right)}}{2}
Square 30.
x=\frac{-30±\sqrt{900+2260}}{2}
Multiply -4 times -565.
x=\frac{-30±\sqrt{3160}}{2}
Add 900 to 2260.
x=\frac{-30±2\sqrt{790}}{2}
Take the square root of 3160.
x=\frac{2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is plus. Add -30 to 2\sqrt{790}.
x=\sqrt{790}-15
Divide -30+2\sqrt{790} by 2.
x=\frac{-2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is minus. Subtract 2\sqrt{790} from -30.
x=-\sqrt{790}-15
Divide -30-2\sqrt{790} by 2.
x=\sqrt{790}-15 x=-\sqrt{790}-15
The equation is now solved.
x^{2}+30x-565=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+30x-565-\left(-565\right)=-\left(-565\right)
Add 565 to both sides of the equation.
x^{2}+30x=-\left(-565\right)
Subtracting -565 from itself leaves 0.
x^{2}+30x=565
Subtract -565 from 0.
x^{2}+30x+15^{2}=565+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+30x+225=565+225
Square 15.
x^{2}+30x+225=790
Add 565 to 225.
\left(x+15\right)^{2}=790
Factor x^{2}+30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+15\right)^{2}}=\sqrt{790}
Take the square root of both sides of the equation.
x+15=\sqrt{790} x+15=-\sqrt{790}
Simplify.
x=\sqrt{790}-15 x=-\sqrt{790}-15
Subtract 15 from both sides of the equation.
x^{2}+30x-565=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-565\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 30 for b, and -565 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-565\right)}}{2}
Square 30.
x=\frac{-30±\sqrt{900+2260}}{2}
Multiply -4 times -565.
x=\frac{-30±\sqrt{3160}}{2}
Add 900 to 2260.
x=\frac{-30±2\sqrt{790}}{2}
Take the square root of 3160.
x=\frac{2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is plus. Add -30 to 2\sqrt{790}.
x=\sqrt{790}-15
Divide -30+2\sqrt{790} by 2.
x=\frac{-2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is minus. Subtract 2\sqrt{790} from -30.
x=-\sqrt{790}-15
Divide -30-2\sqrt{790} by 2.
x=\sqrt{790}-15 x=-\sqrt{790}-15
The equation is now solved.
x^{2}+30x-565=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+30x-565-\left(-565\right)=-\left(-565\right)
Add 565 to both sides of the equation.
x^{2}+30x=-\left(-565\right)
Subtracting -565 from itself leaves 0.
x^{2}+30x=565
Subtract -565 from 0.
x^{2}+30x+15^{2}=565+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+30x+225=565+225
Square 15.
x^{2}+30x+225=790
Add 565 to 225.
\left(x+15\right)^{2}=790
Factor x^{2}+30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+15\right)^{2}}=\sqrt{790}
Take the square root of both sides of the equation.
x+15=\sqrt{790} x+15=-\sqrt{790}
Simplify.
x=\sqrt{790}-15 x=-\sqrt{790}-15
Subtract 15 from both sides of the equation.