Solve for x (complex solution)
x=\sqrt{790}-15\approx 13.106938645
x=-\left(\sqrt{790}+15\right)\approx -43.106938645
Solve for x
x=\sqrt{790}-15\approx 13.106938645
x=-\sqrt{790}-15\approx -43.106938645
Graph
Share
Copied to clipboard
x^{2}+30x-565=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-565\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 30 for b, and -565 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-565\right)}}{2}
Square 30.
x=\frac{-30±\sqrt{900+2260}}{2}
Multiply -4 times -565.
x=\frac{-30±\sqrt{3160}}{2}
Add 900 to 2260.
x=\frac{-30±2\sqrt{790}}{2}
Take the square root of 3160.
x=\frac{2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is plus. Add -30 to 2\sqrt{790}.
x=\sqrt{790}-15
Divide -30+2\sqrt{790} by 2.
x=\frac{-2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is minus. Subtract 2\sqrt{790} from -30.
x=-\sqrt{790}-15
Divide -30-2\sqrt{790} by 2.
x=\sqrt{790}-15 x=-\sqrt{790}-15
The equation is now solved.
x^{2}+30x-565=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+30x-565-\left(-565\right)=-\left(-565\right)
Add 565 to both sides of the equation.
x^{2}+30x=-\left(-565\right)
Subtracting -565 from itself leaves 0.
x^{2}+30x=565
Subtract -565 from 0.
x^{2}+30x+15^{2}=565+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+30x+225=565+225
Square 15.
x^{2}+30x+225=790
Add 565 to 225.
\left(x+15\right)^{2}=790
Factor x^{2}+30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+15\right)^{2}}=\sqrt{790}
Take the square root of both sides of the equation.
x+15=\sqrt{790} x+15=-\sqrt{790}
Simplify.
x=\sqrt{790}-15 x=-\sqrt{790}-15
Subtract 15 from both sides of the equation.
x^{2}+30x-565=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-565\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 30 for b, and -565 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-565\right)}}{2}
Square 30.
x=\frac{-30±\sqrt{900+2260}}{2}
Multiply -4 times -565.
x=\frac{-30±\sqrt{3160}}{2}
Add 900 to 2260.
x=\frac{-30±2\sqrt{790}}{2}
Take the square root of 3160.
x=\frac{2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is plus. Add -30 to 2\sqrt{790}.
x=\sqrt{790}-15
Divide -30+2\sqrt{790} by 2.
x=\frac{-2\sqrt{790}-30}{2}
Now solve the equation x=\frac{-30±2\sqrt{790}}{2} when ± is minus. Subtract 2\sqrt{790} from -30.
x=-\sqrt{790}-15
Divide -30-2\sqrt{790} by 2.
x=\sqrt{790}-15 x=-\sqrt{790}-15
The equation is now solved.
x^{2}+30x-565=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+30x-565-\left(-565\right)=-\left(-565\right)
Add 565 to both sides of the equation.
x^{2}+30x=-\left(-565\right)
Subtracting -565 from itself leaves 0.
x^{2}+30x=565
Subtract -565 from 0.
x^{2}+30x+15^{2}=565+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+30x+225=565+225
Square 15.
x^{2}+30x+225=790
Add 565 to 225.
\left(x+15\right)^{2}=790
Factor x^{2}+30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+15\right)^{2}}=\sqrt{790}
Take the square root of both sides of the equation.
x+15=\sqrt{790} x+15=-\sqrt{790}
Simplify.
x=\sqrt{790}-15 x=-\sqrt{790}-15
Subtract 15 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}