Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-50 ab=1\left(-5000\right)=-5000
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-5000. To find a and b, set up a system to be solved.
1,-5000 2,-2500 4,-1250 5,-1000 8,-625 10,-500 20,-250 25,-200 40,-125 50,-100
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -5000.
1-5000=-4999 2-2500=-2498 4-1250=-1246 5-1000=-995 8-625=-617 10-500=-490 20-250=-230 25-200=-175 40-125=-85 50-100=-50
Calculate the sum for each pair.
a=-100 b=50
The solution is the pair that gives sum -50.
\left(x^{2}-100x\right)+\left(50x-5000\right)
Rewrite x^{2}-50x-5000 as \left(x^{2}-100x\right)+\left(50x-5000\right).
x\left(x-100\right)+50\left(x-100\right)
Factor out x in the first and 50 in the second group.
\left(x-100\right)\left(x+50\right)
Factor out common term x-100 by using distributive property.
x^{2}-50x-5000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\left(-5000\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-50\right)±\sqrt{2500-4\left(-5000\right)}}{2}
Square -50.
x=\frac{-\left(-50\right)±\sqrt{2500+20000}}{2}
Multiply -4 times -5000.
x=\frac{-\left(-50\right)±\sqrt{22500}}{2}
Add 2500 to 20000.
x=\frac{-\left(-50\right)±150}{2}
Take the square root of 22500.
x=\frac{50±150}{2}
The opposite of -50 is 50.
x=\frac{200}{2}
Now solve the equation x=\frac{50±150}{2} when ± is plus. Add 50 to 150.
x=100
Divide 200 by 2.
x=-\frac{100}{2}
Now solve the equation x=\frac{50±150}{2} when ± is minus. Subtract 150 from 50.
x=-50
Divide -100 by 2.
x^{2}-50x-5000=\left(x-100\right)\left(x-\left(-50\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 100 for x_{1} and -50 for x_{2}.
x^{2}-50x-5000=\left(x-100\right)\left(x+50\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.