Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-503.95x-127356.052=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-503.95\right)±\sqrt{\left(-503.95\right)^{2}-4\left(-127356.052\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -503.95 for b, and -127356.052 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-503.95\right)±\sqrt{253965.6025-4\left(-127356.052\right)}}{2}
Square -503.95 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-503.95\right)±\sqrt{253965.6025+509424.208}}{2}
Multiply -4 times -127356.052.
x=\frac{-\left(-503.95\right)±\sqrt{763389.8105}}{2}
Add 253965.6025 to 509424.208 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-503.95\right)±\frac{\sqrt{7633898105}}{100}}{2}
Take the square root of 763389.8105.
x=\frac{503.95±\frac{\sqrt{7633898105}}{100}}{2}
The opposite of -503.95 is 503.95.
x=\frac{\frac{\sqrt{7633898105}}{100}+\frac{10079}{20}}{2}
Now solve the equation x=\frac{503.95±\frac{\sqrt{7633898105}}{100}}{2} when ± is plus. Add 503.95 to \frac{\sqrt{7633898105}}{100}.
x=\frac{\sqrt{7633898105}}{200}+\frac{10079}{40}
Divide \frac{10079}{20}+\frac{\sqrt{7633898105}}{100} by 2.
x=\frac{-\frac{\sqrt{7633898105}}{100}+\frac{10079}{20}}{2}
Now solve the equation x=\frac{503.95±\frac{\sqrt{7633898105}}{100}}{2} when ± is minus. Subtract \frac{\sqrt{7633898105}}{100} from 503.95.
x=-\frac{\sqrt{7633898105}}{200}+\frac{10079}{40}
Divide \frac{10079}{20}-\frac{\sqrt{7633898105}}{100} by 2.
x=\frac{\sqrt{7633898105}}{200}+\frac{10079}{40} x=-\frac{\sqrt{7633898105}}{200}+\frac{10079}{40}
The equation is now solved.
x^{2}-503.95x-127356.052=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-503.95x-127356.052-\left(-127356.052\right)=-\left(-127356.052\right)
Add 127356.052 to both sides of the equation.
x^{2}-503.95x=-\left(-127356.052\right)
Subtracting -127356.052 from itself leaves 0.
x^{2}-503.95x=127356.052
Subtract -127356.052 from 0.
x^{2}-503.95x+\left(-251.975\right)^{2}=127356.052+\left(-251.975\right)^{2}
Divide -503.95, the coefficient of the x term, by 2 to get -251.975. Then add the square of -251.975 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-503.95x+63491.400625=127356.052+63491.400625
Square -251.975 by squaring both the numerator and the denominator of the fraction.
x^{2}-503.95x+63491.400625=190847.452625
Add 127356.052 to 63491.400625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-251.975\right)^{2}=190847.452625
Factor x^{2}-503.95x+63491.400625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-251.975\right)^{2}}=\sqrt{190847.452625}
Take the square root of both sides of the equation.
x-251.975=\frac{\sqrt{7633898105}}{200} x-251.975=-\frac{\sqrt{7633898105}}{200}
Simplify.
x=\frac{\sqrt{7633898105}}{200}+\frac{10079}{40} x=-\frac{\sqrt{7633898105}}{200}+\frac{10079}{40}
Add 251.975 to both sides of the equation.