Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x-8=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-4x-8-20=20-20
Subtract 20 from both sides of the equation.
x^{2}-4x-8-20=0
Subtracting 20 from itself leaves 0.
x^{2}-4x-28=0
Subtract 20 from -8.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-28\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-28\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+112}}{2}
Multiply -4 times -28.
x=\frac{-\left(-4\right)±\sqrt{128}}{2}
Add 16 to 112.
x=\frac{-\left(-4\right)±8\sqrt{2}}{2}
Take the square root of 128.
x=\frac{4±8\sqrt{2}}{2}
The opposite of -4 is 4.
x=\frac{8\sqrt{2}+4}{2}
Now solve the equation x=\frac{4±8\sqrt{2}}{2} when ± is plus. Add 4 to 8\sqrt{2}.
x=4\sqrt{2}+2
Divide 8\sqrt{2}+4 by 2.
x=\frac{4-8\sqrt{2}}{2}
Now solve the equation x=\frac{4±8\sqrt{2}}{2} when ± is minus. Subtract 8\sqrt{2} from 4.
x=2-4\sqrt{2}
Divide 4-8\sqrt{2} by 2.
x=4\sqrt{2}+2 x=2-4\sqrt{2}
The equation is now solved.
x^{2}-4x-8=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-4x-8-\left(-8\right)=20-\left(-8\right)
Add 8 to both sides of the equation.
x^{2}-4x=20-\left(-8\right)
Subtracting -8 from itself leaves 0.
x^{2}-4x=28
Subtract -8 from 20.
x^{2}-4x+\left(-2\right)^{2}=28+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=28+4
Square -2.
x^{2}-4x+4=32
Add 28 to 4.
\left(x-2\right)^{2}=32
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{32}
Take the square root of both sides of the equation.
x-2=4\sqrt{2} x-2=-4\sqrt{2}
Simplify.
x=4\sqrt{2}+2 x=2-4\sqrt{2}
Add 2 to both sides of the equation.