Solve for x
x=\frac{\sqrt{38}}{2}+2\approx 5.082207001
x=-\frac{\sqrt{38}}{2}+2\approx -1.082207001
Graph
Share
Copied to clipboard
x^{2}-4x-5=\frac{1}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-4x-5-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
x^{2}-4x-5-\frac{1}{2}=0
Subtracting \frac{1}{2} from itself leaves 0.
x^{2}-4x-\frac{11}{2}=0
Subtract \frac{1}{2} from -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-\frac{11}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -\frac{11}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-\frac{11}{2}\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+22}}{2}
Multiply -4 times -\frac{11}{2}.
x=\frac{-\left(-4\right)±\sqrt{38}}{2}
Add 16 to 22.
x=\frac{4±\sqrt{38}}{2}
The opposite of -4 is 4.
x=\frac{\sqrt{38}+4}{2}
Now solve the equation x=\frac{4±\sqrt{38}}{2} when ± is plus. Add 4 to \sqrt{38}.
x=\frac{\sqrt{38}}{2}+2
Divide 4+\sqrt{38} by 2.
x=\frac{4-\sqrt{38}}{2}
Now solve the equation x=\frac{4±\sqrt{38}}{2} when ± is minus. Subtract \sqrt{38} from 4.
x=-\frac{\sqrt{38}}{2}+2
Divide 4-\sqrt{38} by 2.
x=\frac{\sqrt{38}}{2}+2 x=-\frac{\sqrt{38}}{2}+2
The equation is now solved.
x^{2}-4x-5=\frac{1}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-4x-5-\left(-5\right)=\frac{1}{2}-\left(-5\right)
Add 5 to both sides of the equation.
x^{2}-4x=\frac{1}{2}-\left(-5\right)
Subtracting -5 from itself leaves 0.
x^{2}-4x=\frac{11}{2}
Subtract -5 from \frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=\frac{11}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{11}{2}+4
Square -2.
x^{2}-4x+4=\frac{19}{2}
Add \frac{11}{2} to 4.
\left(x-2\right)^{2}=\frac{19}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{19}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{38}}{2} x-2=-\frac{\sqrt{38}}{2}
Simplify.
x=\frac{\sqrt{38}}{2}+2 x=-\frac{\sqrt{38}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}