Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x-16=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-16\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -4 for b, and -16 for c in the quadratic formula.
x=\frac{4±4\sqrt{5}}{2}
Do the calculations.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
Solve the equation x=\frac{4±4\sqrt{5}}{2} when ± is plus and when ± is minus.
\left(x-\left(2\sqrt{5}+2\right)\right)\left(x-\left(2-2\sqrt{5}\right)\right)>0
Rewrite the inequality by using the obtained solutions.
x-\left(2\sqrt{5}+2\right)<0 x-\left(2-2\sqrt{5}\right)<0
For the product to be positive, x-\left(2\sqrt{5}+2\right) and x-\left(2-2\sqrt{5}\right) have to be both negative or both positive. Consider the case when x-\left(2\sqrt{5}+2\right) and x-\left(2-2\sqrt{5}\right) are both negative.
x<2-2\sqrt{5}
The solution satisfying both inequalities is x<2-2\sqrt{5}.
x-\left(2-2\sqrt{5}\right)>0 x-\left(2\sqrt{5}+2\right)>0
Consider the case when x-\left(2\sqrt{5}+2\right) and x-\left(2-2\sqrt{5}\right) are both positive.
x>2\sqrt{5}+2
The solution satisfying both inequalities is x>2\sqrt{5}+2.
x<2-2\sqrt{5}\text{; }x>2\sqrt{5}+2
The final solution is the union of the obtained solutions.