Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-489x+28680=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-489\right)±\sqrt{\left(-489\right)^{2}-4\times 28680}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-489\right)±\sqrt{239121-4\times 28680}}{2}
Square -489.
x=\frac{-\left(-489\right)±\sqrt{239121-114720}}{2}
Multiply -4 times 28680.
x=\frac{-\left(-489\right)±\sqrt{124401}}{2}
Add 239121 to -114720.
x=\frac{489±\sqrt{124401}}{2}
The opposite of -489 is 489.
x=\frac{\sqrt{124401}+489}{2}
Now solve the equation x=\frac{489±\sqrt{124401}}{2} when ± is plus. Add 489 to \sqrt{124401}.
x=\frac{489-\sqrt{124401}}{2}
Now solve the equation x=\frac{489±\sqrt{124401}}{2} when ± is minus. Subtract \sqrt{124401} from 489.
x^{2}-489x+28680=\left(x-\frac{\sqrt{124401}+489}{2}\right)\left(x-\frac{489-\sqrt{124401}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{489+\sqrt{124401}}{2} for x_{1} and \frac{489-\sqrt{124401}}{2} for x_{2}.