Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-45x-225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\left(-225\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -45 for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±\sqrt{2025-4\left(-225\right)}}{2}
Square -45.
x=\frac{-\left(-45\right)±\sqrt{2025+900}}{2}
Multiply -4 times -225.
x=\frac{-\left(-45\right)±\sqrt{2925}}{2}
Add 2025 to 900.
x=\frac{-\left(-45\right)±15\sqrt{13}}{2}
Take the square root of 2925.
x=\frac{45±15\sqrt{13}}{2}
The opposite of -45 is 45.
x=\frac{15\sqrt{13}+45}{2}
Now solve the equation x=\frac{45±15\sqrt{13}}{2} when ± is plus. Add 45 to 15\sqrt{13}.
x=\frac{45-15\sqrt{13}}{2}
Now solve the equation x=\frac{45±15\sqrt{13}}{2} when ± is minus. Subtract 15\sqrt{13} from 45.
x=\frac{15\sqrt{13}+45}{2} x=\frac{45-15\sqrt{13}}{2}
The equation is now solved.
x^{2}-45x-225=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-45x-225-\left(-225\right)=-\left(-225\right)
Add 225 to both sides of the equation.
x^{2}-45x=-\left(-225\right)
Subtracting -225 from itself leaves 0.
x^{2}-45x=225
Subtract -225 from 0.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=225+\left(-\frac{45}{2}\right)^{2}
Divide -45, the coefficient of the x term, by 2 to get -\frac{45}{2}. Then add the square of -\frac{45}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-45x+\frac{2025}{4}=225+\frac{2025}{4}
Square -\frac{45}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-45x+\frac{2025}{4}=\frac{2925}{4}
Add 225 to \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{2925}{4}
Factor x^{2}-45x+\frac{2025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{2925}{4}}
Take the square root of both sides of the equation.
x-\frac{45}{2}=\frac{15\sqrt{13}}{2} x-\frac{45}{2}=-\frac{15\sqrt{13}}{2}
Simplify.
x=\frac{15\sqrt{13}+45}{2} x=\frac{45-15\sqrt{13}}{2}
Add \frac{45}{2} to both sides of the equation.