Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-45x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -45 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±\sqrt{2025-4\times 9}}{2}
Square -45.
x=\frac{-\left(-45\right)±\sqrt{2025-36}}{2}
Multiply -4 times 9.
x=\frac{-\left(-45\right)±\sqrt{1989}}{2}
Add 2025 to -36.
x=\frac{-\left(-45\right)±3\sqrt{221}}{2}
Take the square root of 1989.
x=\frac{45±3\sqrt{221}}{2}
The opposite of -45 is 45.
x=\frac{3\sqrt{221}+45}{2}
Now solve the equation x=\frac{45±3\sqrt{221}}{2} when ± is plus. Add 45 to 3\sqrt{221}.
x=\frac{45-3\sqrt{221}}{2}
Now solve the equation x=\frac{45±3\sqrt{221}}{2} when ± is minus. Subtract 3\sqrt{221} from 45.
x=\frac{3\sqrt{221}+45}{2} x=\frac{45-3\sqrt{221}}{2}
The equation is now solved.
x^{2}-45x+9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-45x+9-9=-9
Subtract 9 from both sides of the equation.
x^{2}-45x=-9
Subtracting 9 from itself leaves 0.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=-9+\left(-\frac{45}{2}\right)^{2}
Divide -45, the coefficient of the x term, by 2 to get -\frac{45}{2}. Then add the square of -\frac{45}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-45x+\frac{2025}{4}=-9+\frac{2025}{4}
Square -\frac{45}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-45x+\frac{2025}{4}=\frac{1989}{4}
Add -9 to \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{1989}{4}
Factor x^{2}-45x+\frac{2025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{1989}{4}}
Take the square root of both sides of the equation.
x-\frac{45}{2}=\frac{3\sqrt{221}}{2} x-\frac{45}{2}=-\frac{3\sqrt{221}}{2}
Simplify.
x=\frac{3\sqrt{221}+45}{2} x=\frac{45-3\sqrt{221}}{2}
Add \frac{45}{2} to both sides of the equation.