Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-42x+45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 45}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 45}}{2}
Square -42.
x=\frac{-\left(-42\right)±\sqrt{1764-180}}{2}
Multiply -4 times 45.
x=\frac{-\left(-42\right)±\sqrt{1584}}{2}
Add 1764 to -180.
x=\frac{-\left(-42\right)±12\sqrt{11}}{2}
Take the square root of 1584.
x=\frac{42±12\sqrt{11}}{2}
The opposite of -42 is 42.
x=\frac{12\sqrt{11}+42}{2}
Now solve the equation x=\frac{42±12\sqrt{11}}{2} when ± is plus. Add 42 to 12\sqrt{11}.
x=6\sqrt{11}+21
Divide 42+12\sqrt{11} by 2.
x=\frac{42-12\sqrt{11}}{2}
Now solve the equation x=\frac{42±12\sqrt{11}}{2} when ± is minus. Subtract 12\sqrt{11} from 42.
x=21-6\sqrt{11}
Divide 42-12\sqrt{11} by 2.
x^{2}-42x+45=\left(x-\left(6\sqrt{11}+21\right)\right)\left(x-\left(21-6\sqrt{11}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 21+6\sqrt{11} for x_{1} and 21-6\sqrt{11} for x_{2}.