Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-41x+800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 800}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -41 for b, and 800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 800}}{2}
Square -41.
x=\frac{-\left(-41\right)±\sqrt{1681-3200}}{2}
Multiply -4 times 800.
x=\frac{-\left(-41\right)±\sqrt{-1519}}{2}
Add 1681 to -3200.
x=\frac{-\left(-41\right)±7\sqrt{31}i}{2}
Take the square root of -1519.
x=\frac{41±7\sqrt{31}i}{2}
The opposite of -41 is 41.
x=\frac{41+7\sqrt{31}i}{2}
Now solve the equation x=\frac{41±7\sqrt{31}i}{2} when ± is plus. Add 41 to 7i\sqrt{31}.
x=\frac{-7\sqrt{31}i+41}{2}
Now solve the equation x=\frac{41±7\sqrt{31}i}{2} when ± is minus. Subtract 7i\sqrt{31} from 41.
x=\frac{41+7\sqrt{31}i}{2} x=\frac{-7\sqrt{31}i+41}{2}
The equation is now solved.
x^{2}-41x+800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-41x+800-800=-800
Subtract 800 from both sides of the equation.
x^{2}-41x=-800
Subtracting 800 from itself leaves 0.
x^{2}-41x+\left(-\frac{41}{2}\right)^{2}=-800+\left(-\frac{41}{2}\right)^{2}
Divide -41, the coefficient of the x term, by 2 to get -\frac{41}{2}. Then add the square of -\frac{41}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-41x+\frac{1681}{4}=-800+\frac{1681}{4}
Square -\frac{41}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-41x+\frac{1681}{4}=-\frac{1519}{4}
Add -800 to \frac{1681}{4}.
\left(x-\frac{41}{2}\right)^{2}=-\frac{1519}{4}
Factor x^{2}-41x+\frac{1681}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{41}{2}\right)^{2}}=\sqrt{-\frac{1519}{4}}
Take the square root of both sides of the equation.
x-\frac{41}{2}=\frac{7\sqrt{31}i}{2} x-\frac{41}{2}=-\frac{7\sqrt{31}i}{2}
Simplify.
x=\frac{41+7\sqrt{31}i}{2} x=\frac{-7\sqrt{31}i+41}{2}
Add \frac{41}{2} to both sides of the equation.