Solve for x
x=1
x=\frac{8}{15}\approx 0.533333333
Graph
Share
Copied to clipboard
x^{2}-4\left(4x^{2}-4x+1\right)+x+3\left(2x-1\right)=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
x^{2}-16x^{2}+16x-4+x+3\left(2x-1\right)=1
Use the distributive property to multiply -4 by 4x^{2}-4x+1.
-15x^{2}+16x-4+x+3\left(2x-1\right)=1
Combine x^{2} and -16x^{2} to get -15x^{2}.
-15x^{2}+17x-4+3\left(2x-1\right)=1
Combine 16x and x to get 17x.
-15x^{2}+17x-4+6x-3=1
Use the distributive property to multiply 3 by 2x-1.
-15x^{2}+23x-4-3=1
Combine 17x and 6x to get 23x.
-15x^{2}+23x-7=1
Subtract 3 from -4 to get -7.
-15x^{2}+23x-7-1=0
Subtract 1 from both sides.
-15x^{2}+23x-8=0
Subtract 1 from -7 to get -8.
a+b=23 ab=-15\left(-8\right)=120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -15x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 120.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
Calculate the sum for each pair.
a=15 b=8
The solution is the pair that gives sum 23.
\left(-15x^{2}+15x\right)+\left(8x-8\right)
Rewrite -15x^{2}+23x-8 as \left(-15x^{2}+15x\right)+\left(8x-8\right).
15x\left(-x+1\right)-8\left(-x+1\right)
Factor out 15x in the first and -8 in the second group.
\left(-x+1\right)\left(15x-8\right)
Factor out common term -x+1 by using distributive property.
x=1 x=\frac{8}{15}
To find equation solutions, solve -x+1=0 and 15x-8=0.
x^{2}-4\left(4x^{2}-4x+1\right)+x+3\left(2x-1\right)=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
x^{2}-16x^{2}+16x-4+x+3\left(2x-1\right)=1
Use the distributive property to multiply -4 by 4x^{2}-4x+1.
-15x^{2}+16x-4+x+3\left(2x-1\right)=1
Combine x^{2} and -16x^{2} to get -15x^{2}.
-15x^{2}+17x-4+3\left(2x-1\right)=1
Combine 16x and x to get 17x.
-15x^{2}+17x-4+6x-3=1
Use the distributive property to multiply 3 by 2x-1.
-15x^{2}+23x-4-3=1
Combine 17x and 6x to get 23x.
-15x^{2}+23x-7=1
Subtract 3 from -4 to get -7.
-15x^{2}+23x-7-1=0
Subtract 1 from both sides.
-15x^{2}+23x-8=0
Subtract 1 from -7 to get -8.
x=\frac{-23±\sqrt{23^{2}-4\left(-15\right)\left(-8\right)}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 23 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-23±\sqrt{529-4\left(-15\right)\left(-8\right)}}{2\left(-15\right)}
Square 23.
x=\frac{-23±\sqrt{529+60\left(-8\right)}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-23±\sqrt{529-480}}{2\left(-15\right)}
Multiply 60 times -8.
x=\frac{-23±\sqrt{49}}{2\left(-15\right)}
Add 529 to -480.
x=\frac{-23±7}{2\left(-15\right)}
Take the square root of 49.
x=\frac{-23±7}{-30}
Multiply 2 times -15.
x=-\frac{16}{-30}
Now solve the equation x=\frac{-23±7}{-30} when ± is plus. Add -23 to 7.
x=\frac{8}{15}
Reduce the fraction \frac{-16}{-30} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{-30}
Now solve the equation x=\frac{-23±7}{-30} when ± is minus. Subtract 7 from -23.
x=1
Divide -30 by -30.
x=\frac{8}{15} x=1
The equation is now solved.
x^{2}-4\left(4x^{2}-4x+1\right)+x+3\left(2x-1\right)=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
x^{2}-16x^{2}+16x-4+x+3\left(2x-1\right)=1
Use the distributive property to multiply -4 by 4x^{2}-4x+1.
-15x^{2}+16x-4+x+3\left(2x-1\right)=1
Combine x^{2} and -16x^{2} to get -15x^{2}.
-15x^{2}+17x-4+3\left(2x-1\right)=1
Combine 16x and x to get 17x.
-15x^{2}+17x-4+6x-3=1
Use the distributive property to multiply 3 by 2x-1.
-15x^{2}+23x-4-3=1
Combine 17x and 6x to get 23x.
-15x^{2}+23x-7=1
Subtract 3 from -4 to get -7.
-15x^{2}+23x=1+7
Add 7 to both sides.
-15x^{2}+23x=8
Add 1 and 7 to get 8.
\frac{-15x^{2}+23x}{-15}=\frac{8}{-15}
Divide both sides by -15.
x^{2}+\frac{23}{-15}x=\frac{8}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-\frac{23}{15}x=\frac{8}{-15}
Divide 23 by -15.
x^{2}-\frac{23}{15}x=-\frac{8}{15}
Divide 8 by -15.
x^{2}-\frac{23}{15}x+\left(-\frac{23}{30}\right)^{2}=-\frac{8}{15}+\left(-\frac{23}{30}\right)^{2}
Divide -\frac{23}{15}, the coefficient of the x term, by 2 to get -\frac{23}{30}. Then add the square of -\frac{23}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{15}x+\frac{529}{900}=-\frac{8}{15}+\frac{529}{900}
Square -\frac{23}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{23}{15}x+\frac{529}{900}=\frac{49}{900}
Add -\frac{8}{15} to \frac{529}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{23}{30}\right)^{2}=\frac{49}{900}
Factor x^{2}-\frac{23}{15}x+\frac{529}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{30}\right)^{2}}=\sqrt{\frac{49}{900}}
Take the square root of both sides of the equation.
x-\frac{23}{30}=\frac{7}{30} x-\frac{23}{30}=-\frac{7}{30}
Simplify.
x=1 x=\frac{8}{15}
Add \frac{23}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}