Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+12=4\sqrt{3}
Add 4\sqrt{3} to both sides. Anything plus zero gives itself.
x^{2}=4\sqrt{3}-12
Subtract 12 from both sides.
x=2i\sqrt[4]{3}\sqrt{\sqrt{3}-1} x=-2i\sqrt[4]{3}\sqrt{\sqrt{3}-1}
The equation is now solved.
x^{2}+12-4\sqrt{3}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(12-4\sqrt{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -4\sqrt{3}+12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(12-4\sqrt{3}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{16\sqrt{3}-48}}{2}
Multiply -4 times -4\sqrt{3}+12.
x=\frac{0±4i\sqrt{3-\sqrt{3}}}{2}
Take the square root of 16\sqrt{3}-48.
x=2i\sqrt[4]{3}\sqrt{\sqrt{3}-1}
Now solve the equation x=\frac{0±4i\sqrt{3-\sqrt{3}}}{2} when ± is plus.
x=-2i\sqrt[4]{3}\sqrt{\sqrt{3}-1}
Now solve the equation x=\frac{0±4i\sqrt{3-\sqrt{3}}}{2} when ± is minus.
x=2i\sqrt[4]{3}\sqrt{\sqrt{3}-1} x=-2i\sqrt[4]{3}\sqrt{\sqrt{3}-1}
The equation is now solved.