Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-3 ab=1\left(-378\right)=-378
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-378. To find a and b, set up a system to be solved.
1,-378 2,-189 3,-126 6,-63 7,-54 9,-42 14,-27 18,-21
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -378.
1-378=-377 2-189=-187 3-126=-123 6-63=-57 7-54=-47 9-42=-33 14-27=-13 18-21=-3
Calculate the sum for each pair.
a=-21 b=18
The solution is the pair that gives sum -3.
\left(x^{2}-21x\right)+\left(18x-378\right)
Rewrite x^{2}-3x-378 as \left(x^{2}-21x\right)+\left(18x-378\right).
x\left(x-21\right)+18\left(x-21\right)
Factor out x in the first and 18 in the second group.
\left(x-21\right)\left(x+18\right)
Factor out common term x-21 by using distributive property.
x^{2}-3x-378=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-378\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-378\right)}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+1512}}{2}
Multiply -4 times -378.
x=\frac{-\left(-3\right)±\sqrt{1521}}{2}
Add 9 to 1512.
x=\frac{-\left(-3\right)±39}{2}
Take the square root of 1521.
x=\frac{3±39}{2}
The opposite of -3 is 3.
x=\frac{42}{2}
Now solve the equation x=\frac{3±39}{2} when ± is plus. Add 3 to 39.
x=21
Divide 42 by 2.
x=-\frac{36}{2}
Now solve the equation x=\frac{3±39}{2} when ± is minus. Subtract 39 from 3.
x=-18
Divide -36 by 2.
x^{2}-3x-378=\left(x-21\right)\left(x-\left(-18\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 21 for x_{1} and -18 for x_{2}.
x^{2}-3x-378=\left(x-21\right)\left(x+18\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.