{ x }^{ 2 } -3x+ { \left( { x }^{ } +3 \right) }^{ 2 } = 0
Solve for x (complex solution)
x=\frac{-3+3\sqrt{7}i}{4}\approx -0.75+1.984313483i
x=\frac{-3\sqrt{7}i-3}{4}\approx -0.75-1.984313483i
Graph
Quiz
Quadratic Equation
5 problems similar to:
{ x }^{ 2 } -3x+ { \left( { x }^{ } +3 \right) }^{ 2 } = 0
Share
Copied to clipboard
x^{2}-3x+\left(x+3\right)^{2}=0
Calculate x to the power of 1 and get x.
x^{2}-3x+x^{2}+6x+9=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}-3x+6x+9=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x+9=0
Combine -3x and 6x to get 3x.
x=\frac{-3±\sqrt{3^{2}-4\times 2\times 9}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\times 9}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\times 9}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9-72}}{2\times 2}
Multiply -8 times 9.
x=\frac{-3±\sqrt{-63}}{2\times 2}
Add 9 to -72.
x=\frac{-3±3\sqrt{7}i}{2\times 2}
Take the square root of -63.
x=\frac{-3±3\sqrt{7}i}{4}
Multiply 2 times 2.
x=\frac{-3+3\sqrt{7}i}{4}
Now solve the equation x=\frac{-3±3\sqrt{7}i}{4} when ± is plus. Add -3 to 3i\sqrt{7}.
x=\frac{-3\sqrt{7}i-3}{4}
Now solve the equation x=\frac{-3±3\sqrt{7}i}{4} when ± is minus. Subtract 3i\sqrt{7} from -3.
x=\frac{-3+3\sqrt{7}i}{4} x=\frac{-3\sqrt{7}i-3}{4}
The equation is now solved.
x^{2}-3x+\left(x+3\right)^{2}=0
Calculate x to the power of 1 and get x.
x^{2}-3x+x^{2}+6x+9=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}-3x+6x+9=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x+9=0
Combine -3x and 6x to get 3x.
2x^{2}+3x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+3x}{2}=-\frac{9}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=-\frac{9}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{9}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{9}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{63}{16}
Add -\frac{9}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=-\frac{63}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{63}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{3\sqrt{7}i}{4} x+\frac{3}{4}=-\frac{3\sqrt{7}i}{4}
Simplify.
x=\frac{-3+3\sqrt{7}i}{4} x=\frac{-3\sqrt{7}i-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}