Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x+\frac{2}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{2}{5}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and \frac{2}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{2}{5}}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-\frac{8}{5}}}{2}
Multiply -4 times \frac{2}{5}.
x=\frac{-\left(-3\right)±\sqrt{\frac{37}{5}}}{2}
Add 9 to -\frac{8}{5}.
x=\frac{-\left(-3\right)±\frac{\sqrt{185}}{5}}{2}
Take the square root of \frac{37}{5}.
x=\frac{3±\frac{\sqrt{185}}{5}}{2}
The opposite of -3 is 3.
x=\frac{\frac{\sqrt{185}}{5}+3}{2}
Now solve the equation x=\frac{3±\frac{\sqrt{185}}{5}}{2} when ± is plus. Add 3 to \frac{\sqrt{185}}{5}.
x=\frac{\sqrt{185}}{10}+\frac{3}{2}
Divide 3+\frac{\sqrt{185}}{5} by 2.
x=\frac{-\frac{\sqrt{185}}{5}+3}{2}
Now solve the equation x=\frac{3±\frac{\sqrt{185}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{185}}{5} from 3.
x=-\frac{\sqrt{185}}{10}+\frac{3}{2}
Divide 3-\frac{\sqrt{185}}{5} by 2.
x=\frac{\sqrt{185}}{10}+\frac{3}{2} x=-\frac{\sqrt{185}}{10}+\frac{3}{2}
The equation is now solved.
x^{2}-3x+\frac{2}{5}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-3x+\frac{2}{5}-\frac{2}{5}=-\frac{2}{5}
Subtract \frac{2}{5} from both sides of the equation.
x^{2}-3x=-\frac{2}{5}
Subtracting \frac{2}{5} from itself leaves 0.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{2}{5}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{2}{5}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{37}{20}
Add -\frac{2}{5} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{37}{20}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{37}{20}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{185}}{10} x-\frac{3}{2}=-\frac{\sqrt{185}}{10}
Simplify.
x=\frac{\sqrt{185}}{10}+\frac{3}{2} x=-\frac{\sqrt{185}}{10}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.