Factor
\left(x-32\right)\left(x-6\right)
Evaluate
\left(x-32\right)\left(x-6\right)
Graph
Share
Copied to clipboard
a+b=-38 ab=1\times 192=192
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+192. To find a and b, set up a system to be solved.
-1,-192 -2,-96 -3,-64 -4,-48 -6,-32 -8,-24 -12,-16
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 192.
-1-192=-193 -2-96=-98 -3-64=-67 -4-48=-52 -6-32=-38 -8-24=-32 -12-16=-28
Calculate the sum for each pair.
a=-32 b=-6
The solution is the pair that gives sum -38.
\left(x^{2}-32x\right)+\left(-6x+192\right)
Rewrite x^{2}-38x+192 as \left(x^{2}-32x\right)+\left(-6x+192\right).
x\left(x-32\right)-6\left(x-32\right)
Factor out x in the first and -6 in the second group.
\left(x-32\right)\left(x-6\right)
Factor out common term x-32 by using distributive property.
x^{2}-38x+192=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\times 192}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-38\right)±\sqrt{1444-4\times 192}}{2}
Square -38.
x=\frac{-\left(-38\right)±\sqrt{1444-768}}{2}
Multiply -4 times 192.
x=\frac{-\left(-38\right)±\sqrt{676}}{2}
Add 1444 to -768.
x=\frac{-\left(-38\right)±26}{2}
Take the square root of 676.
x=\frac{38±26}{2}
The opposite of -38 is 38.
x=\frac{64}{2}
Now solve the equation x=\frac{38±26}{2} when ± is plus. Add 38 to 26.
x=32
Divide 64 by 2.
x=\frac{12}{2}
Now solve the equation x=\frac{38±26}{2} when ± is minus. Subtract 26 from 38.
x=6
Divide 12 by 2.
x^{2}-38x+192=\left(x-32\right)\left(x-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 32 for x_{1} and 6 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}