Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-37x-68=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\left(-68\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -37 for b, and -68 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-37\right)±\sqrt{1369-4\left(-68\right)}}{2}
Square -37.
x=\frac{-\left(-37\right)±\sqrt{1369+272}}{2}
Multiply -4 times -68.
x=\frac{-\left(-37\right)±\sqrt{1641}}{2}
Add 1369 to 272.
x=\frac{37±\sqrt{1641}}{2}
The opposite of -37 is 37.
x=\frac{\sqrt{1641}+37}{2}
Now solve the equation x=\frac{37±\sqrt{1641}}{2} when ± is plus. Add 37 to \sqrt{1641}.
x=\frac{37-\sqrt{1641}}{2}
Now solve the equation x=\frac{37±\sqrt{1641}}{2} when ± is minus. Subtract \sqrt{1641} from 37.
x=\frac{\sqrt{1641}+37}{2} x=\frac{37-\sqrt{1641}}{2}
The equation is now solved.
x^{2}-37x-68=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-37x-68-\left(-68\right)=-\left(-68\right)
Add 68 to both sides of the equation.
x^{2}-37x=-\left(-68\right)
Subtracting -68 from itself leaves 0.
x^{2}-37x=68
Subtract -68 from 0.
x^{2}-37x+\left(-\frac{37}{2}\right)^{2}=68+\left(-\frac{37}{2}\right)^{2}
Divide -37, the coefficient of the x term, by 2 to get -\frac{37}{2}. Then add the square of -\frac{37}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-37x+\frac{1369}{4}=68+\frac{1369}{4}
Square -\frac{37}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-37x+\frac{1369}{4}=\frac{1641}{4}
Add 68 to \frac{1369}{4}.
\left(x-\frac{37}{2}\right)^{2}=\frac{1641}{4}
Factor x^{2}-37x+\frac{1369}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{2}\right)^{2}}=\sqrt{\frac{1641}{4}}
Take the square root of both sides of the equation.
x-\frac{37}{2}=\frac{\sqrt{1641}}{2} x-\frac{37}{2}=-\frac{\sqrt{1641}}{2}
Simplify.
x=\frac{\sqrt{1641}+37}{2} x=\frac{37-\sqrt{1641}}{2}
Add \frac{37}{2} to both sides of the equation.