Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-35x+745=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 745}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -35 for b, and 745 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 745}}{2}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-2980}}{2}
Multiply -4 times 745.
x=\frac{-\left(-35\right)±\sqrt{-1755}}{2}
Add 1225 to -2980.
x=\frac{-\left(-35\right)±3\sqrt{195}i}{2}
Take the square root of -1755.
x=\frac{35±3\sqrt{195}i}{2}
The opposite of -35 is 35.
x=\frac{35+3\sqrt{195}i}{2}
Now solve the equation x=\frac{35±3\sqrt{195}i}{2} when ± is plus. Add 35 to 3i\sqrt{195}.
x=\frac{-3\sqrt{195}i+35}{2}
Now solve the equation x=\frac{35±3\sqrt{195}i}{2} when ± is minus. Subtract 3i\sqrt{195} from 35.
x=\frac{35+3\sqrt{195}i}{2} x=\frac{-3\sqrt{195}i+35}{2}
The equation is now solved.
x^{2}-35x+745=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-35x+745-745=-745
Subtract 745 from both sides of the equation.
x^{2}-35x=-745
Subtracting 745 from itself leaves 0.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=-745+\left(-\frac{35}{2}\right)^{2}
Divide -35, the coefficient of the x term, by 2 to get -\frac{35}{2}. Then add the square of -\frac{35}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-35x+\frac{1225}{4}=-745+\frac{1225}{4}
Square -\frac{35}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-35x+\frac{1225}{4}=-\frac{1755}{4}
Add -745 to \frac{1225}{4}.
\left(x-\frac{35}{2}\right)^{2}=-\frac{1755}{4}
Factor x^{2}-35x+\frac{1225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{-\frac{1755}{4}}
Take the square root of both sides of the equation.
x-\frac{35}{2}=\frac{3\sqrt{195}i}{2} x-\frac{35}{2}=-\frac{3\sqrt{195}i}{2}
Simplify.
x=\frac{35+3\sqrt{195}i}{2} x=\frac{-3\sqrt{195}i+35}{2}
Add \frac{35}{2} to both sides of the equation.