Solve for x
x=100
x=250
Graph
Share
Copied to clipboard
x^{2}-350x+25000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-350\right)±\sqrt{\left(-350\right)^{2}-4\times 25000}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -350 for b, and 25000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-350\right)±\sqrt{122500-4\times 25000}}{2}
Square -350.
x=\frac{-\left(-350\right)±\sqrt{122500-100000}}{2}
Multiply -4 times 25000.
x=\frac{-\left(-350\right)±\sqrt{22500}}{2}
Add 122500 to -100000.
x=\frac{-\left(-350\right)±150}{2}
Take the square root of 22500.
x=\frac{350±150}{2}
The opposite of -350 is 350.
x=\frac{500}{2}
Now solve the equation x=\frac{350±150}{2} when ± is plus. Add 350 to 150.
x=250
Divide 500 by 2.
x=\frac{200}{2}
Now solve the equation x=\frac{350±150}{2} when ± is minus. Subtract 150 from 350.
x=100
Divide 200 by 2.
x=250 x=100
The equation is now solved.
x^{2}-350x+25000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-350x+25000-25000=-25000
Subtract 25000 from both sides of the equation.
x^{2}-350x=-25000
Subtracting 25000 from itself leaves 0.
x^{2}-350x+\left(-175\right)^{2}=-25000+\left(-175\right)^{2}
Divide -350, the coefficient of the x term, by 2 to get -175. Then add the square of -175 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-350x+30625=-25000+30625
Square -175.
x^{2}-350x+30625=5625
Add -25000 to 30625.
\left(x-175\right)^{2}=5625
Factor x^{2}-350x+30625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-175\right)^{2}}=\sqrt{5625}
Take the square root of both sides of the equation.
x-175=75 x-175=-75
Simplify.
x=250 x=100
Add 175 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}