Solve for x (complex solution)
x=16+2\sqrt{86}i\approx 16+18.547236991i
x=-2\sqrt{86}i+16\approx 16-18.547236991i
Graph
Share
Copied to clipboard
x^{2}-32x+600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 600}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -32 for b, and 600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 600}}{2}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-2400}}{2}
Multiply -4 times 600.
x=\frac{-\left(-32\right)±\sqrt{-1376}}{2}
Add 1024 to -2400.
x=\frac{-\left(-32\right)±4\sqrt{86}i}{2}
Take the square root of -1376.
x=\frac{32±4\sqrt{86}i}{2}
The opposite of -32 is 32.
x=\frac{32+4\sqrt{86}i}{2}
Now solve the equation x=\frac{32±4\sqrt{86}i}{2} when ± is plus. Add 32 to 4i\sqrt{86}.
x=16+2\sqrt{86}i
Divide 32+4i\sqrt{86} by 2.
x=\frac{-4\sqrt{86}i+32}{2}
Now solve the equation x=\frac{32±4\sqrt{86}i}{2} when ± is minus. Subtract 4i\sqrt{86} from 32.
x=-2\sqrt{86}i+16
Divide 32-4i\sqrt{86} by 2.
x=16+2\sqrt{86}i x=-2\sqrt{86}i+16
The equation is now solved.
x^{2}-32x+600=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-32x+600-600=-600
Subtract 600 from both sides of the equation.
x^{2}-32x=-600
Subtracting 600 from itself leaves 0.
x^{2}-32x+\left(-16\right)^{2}=-600+\left(-16\right)^{2}
Divide -32, the coefficient of the x term, by 2 to get -16. Then add the square of -16 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-32x+256=-600+256
Square -16.
x^{2}-32x+256=-344
Add -600 to 256.
\left(x-16\right)^{2}=-344
Factor x^{2}-32x+256. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-16\right)^{2}}=\sqrt{-344}
Take the square root of both sides of the equation.
x-16=2\sqrt{86}i x-16=-2\sqrt{86}i
Simplify.
x=16+2\sqrt{86}i x=-2\sqrt{86}i+16
Add 16 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}