Solve for x
x=\sqrt{211}+16\approx 30.525839046
x=16-\sqrt{211}\approx 1.474160954
Graph
Share
Copied to clipboard
x^{2}-32x+45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 45}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -32 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 45}}{2}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-180}}{2}
Multiply -4 times 45.
x=\frac{-\left(-32\right)±\sqrt{844}}{2}
Add 1024 to -180.
x=\frac{-\left(-32\right)±2\sqrt{211}}{2}
Take the square root of 844.
x=\frac{32±2\sqrt{211}}{2}
The opposite of -32 is 32.
x=\frac{2\sqrt{211}+32}{2}
Now solve the equation x=\frac{32±2\sqrt{211}}{2} when ± is plus. Add 32 to 2\sqrt{211}.
x=\sqrt{211}+16
Divide 32+2\sqrt{211} by 2.
x=\frac{32-2\sqrt{211}}{2}
Now solve the equation x=\frac{32±2\sqrt{211}}{2} when ± is minus. Subtract 2\sqrt{211} from 32.
x=16-\sqrt{211}
Divide 32-2\sqrt{211} by 2.
x=\sqrt{211}+16 x=16-\sqrt{211}
The equation is now solved.
x^{2}-32x+45=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-32x+45-45=-45
Subtract 45 from both sides of the equation.
x^{2}-32x=-45
Subtracting 45 from itself leaves 0.
x^{2}-32x+\left(-16\right)^{2}=-45+\left(-16\right)^{2}
Divide -32, the coefficient of the x term, by 2 to get -16. Then add the square of -16 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-32x+256=-45+256
Square -16.
x^{2}-32x+256=211
Add -45 to 256.
\left(x-16\right)^{2}=211
Factor x^{2}-32x+256. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-16\right)^{2}}=\sqrt{211}
Take the square root of both sides of the equation.
x-16=\sqrt{211} x-16=-\sqrt{211}
Simplify.
x=\sqrt{211}+16 x=16-\sqrt{211}
Add 16 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}