Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-31x-276=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\left(-276\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -31 for b, and -276 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-31\right)±\sqrt{961-4\left(-276\right)}}{2}
Square -31.
x=\frac{-\left(-31\right)±\sqrt{961+1104}}{2}
Multiply -4 times -276.
x=\frac{-\left(-31\right)±\sqrt{2065}}{2}
Add 961 to 1104.
x=\frac{31±\sqrt{2065}}{2}
The opposite of -31 is 31.
x=\frac{\sqrt{2065}+31}{2}
Now solve the equation x=\frac{31±\sqrt{2065}}{2} when ± is plus. Add 31 to \sqrt{2065}.
x=\frac{31-\sqrt{2065}}{2}
Now solve the equation x=\frac{31±\sqrt{2065}}{2} when ± is minus. Subtract \sqrt{2065} from 31.
x=\frac{\sqrt{2065}+31}{2} x=\frac{31-\sqrt{2065}}{2}
The equation is now solved.
x^{2}-31x-276=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-31x-276-\left(-276\right)=-\left(-276\right)
Add 276 to both sides of the equation.
x^{2}-31x=-\left(-276\right)
Subtracting -276 from itself leaves 0.
x^{2}-31x=276
Subtract -276 from 0.
x^{2}-31x+\left(-\frac{31}{2}\right)^{2}=276+\left(-\frac{31}{2}\right)^{2}
Divide -31, the coefficient of the x term, by 2 to get -\frac{31}{2}. Then add the square of -\frac{31}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-31x+\frac{961}{4}=276+\frac{961}{4}
Square -\frac{31}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-31x+\frac{961}{4}=\frac{2065}{4}
Add 276 to \frac{961}{4}.
\left(x-\frac{31}{2}\right)^{2}=\frac{2065}{4}
Factor x^{2}-31x+\frac{961}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{2}\right)^{2}}=\sqrt{\frac{2065}{4}}
Take the square root of both sides of the equation.
x-\frac{31}{2}=\frac{\sqrt{2065}}{2} x-\frac{31}{2}=-\frac{\sqrt{2065}}{2}
Simplify.
x=\frac{\sqrt{2065}+31}{2} x=\frac{31-\sqrt{2065}}{2}
Add \frac{31}{2} to both sides of the equation.