Solve for x (complex solution)
\left\{\begin{matrix}\\x=3\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=-1\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}\\y=-1\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=3\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=3\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=-1\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=-1\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=3\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-2yx+7-x^{2}=-6y+2x+1
Subtract x^{2} from both sides.
-2yx+7=-6y+2x+1
Combine x^{2} and -x^{2} to get 0.
-2yx+7-2x=-6y+1
Subtract 2x from both sides.
-2yx-2x=-6y+1-7
Subtract 7 from both sides.
-2yx-2x=-6y-6
Subtract 7 from 1 to get -6.
\left(-2y-2\right)x=-6y-6
Combine all terms containing x.
\frac{\left(-2y-2\right)x}{-2y-2}=\frac{-6y-6}{-2y-2}
Divide both sides by -2y-2.
x=\frac{-6y-6}{-2y-2}
Dividing by -2y-2 undoes the multiplication by -2y-2.
x=3
Divide -6y-6 by -2y-2.
x^{2}-2yx+7+6y=x^{2}+2x+1
Add 6y to both sides.
-2yx+7+6y=x^{2}+2x+1-x^{2}
Subtract x^{2} from both sides.
-2yx+7+6y=2x+1
Combine x^{2} and -x^{2} to get 0.
-2yx+6y=2x+1-7
Subtract 7 from both sides.
-2yx+6y=2x-6
Subtract 7 from 1 to get -6.
\left(-2x+6\right)y=2x-6
Combine all terms containing y.
\left(6-2x\right)y=2x-6
The equation is in standard form.
\frac{\left(6-2x\right)y}{6-2x}=\frac{2x-6}{6-2x}
Divide both sides by -2x+6.
y=\frac{2x-6}{6-2x}
Dividing by -2x+6 undoes the multiplication by -2x+6.
y=-1
Divide -6+2x by -2x+6.
x^{2}-2yx+7-x^{2}=-6y+2x+1
Subtract x^{2} from both sides.
-2yx+7=-6y+2x+1
Combine x^{2} and -x^{2} to get 0.
-2yx+7-2x=-6y+1
Subtract 2x from both sides.
-2yx-2x=-6y+1-7
Subtract 7 from both sides.
-2yx-2x=-6y-6
Subtract 7 from 1 to get -6.
\left(-2y-2\right)x=-6y-6
Combine all terms containing x.
\frac{\left(-2y-2\right)x}{-2y-2}=\frac{-6y-6}{-2y-2}
Divide both sides by -2y-2.
x=\frac{-6y-6}{-2y-2}
Dividing by -2y-2 undoes the multiplication by -2y-2.
x=3
Divide -6y-6 by -2y-2.
x^{2}-2yx+7+6y=x^{2}+2x+1
Add 6y to both sides.
-2yx+7+6y=x^{2}+2x+1-x^{2}
Subtract x^{2} from both sides.
-2yx+7+6y=2x+1
Combine x^{2} and -x^{2} to get 0.
-2yx+6y=2x+1-7
Subtract 7 from both sides.
-2yx+6y=2x-6
Subtract 7 from 1 to get -6.
\left(-2x+6\right)y=2x-6
Combine all terms containing y.
\left(6-2x\right)y=2x-6
The equation is in standard form.
\frac{\left(6-2x\right)y}{6-2x}=\frac{2x-6}{6-2x}
Divide both sides by -2x+6.
y=\frac{2x-6}{6-2x}
Dividing by -2x+6 undoes the multiplication by -2x+6.
y=-1
Divide -6+2x by -2x+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}