Solve for b (complex solution)
\left\{\begin{matrix}\\b=\frac{x\left(x+1\right)}{2}\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=1\text{ or }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=\frac{x\left(x+1\right)}{2}\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=1\text{ or }x=0\end{matrix}\right.
Solve for x (complex solution)
x=1
x=0
x=\frac{\sqrt{8b+1}-1}{2}
x=\frac{-\sqrt{8b+1}-1}{2}
Solve for x
\left\{\begin{matrix}\\x=1\text{; }x=0\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{8b+1}-1}{2}\text{; }x=\frac{\sqrt{8b+1}-1}{2}\text{, }&b\geq -\frac{1}{8}\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-2xb+b^{2}=\left(x^{2}\right)^{2}-2x^{2}b+b^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-b\right)^{2}.
x^{2}-2xb+b^{2}=x^{4}-2x^{2}b+b^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}-2xb+b^{2}+2x^{2}b=x^{4}+b^{2}
Add 2x^{2}b to both sides.
x^{2}-2xb+b^{2}+2x^{2}b-b^{2}=x^{4}
Subtract b^{2} from both sides.
x^{2}-2xb+2x^{2}b=x^{4}
Combine b^{2} and -b^{2} to get 0.
-2xb+2x^{2}b=x^{4}-x^{2}
Subtract x^{2} from both sides.
\left(-2x+2x^{2}\right)b=x^{4}-x^{2}
Combine all terms containing b.
\left(2x^{2}-2x\right)b=x^{4}-x^{2}
The equation is in standard form.
\frac{\left(2x^{2}-2x\right)b}{2x^{2}-2x}=\frac{x^{4}-x^{2}}{2x^{2}-2x}
Divide both sides by -2x+2x^{2}.
b=\frac{x^{4}-x^{2}}{2x^{2}-2x}
Dividing by -2x+2x^{2} undoes the multiplication by -2x+2x^{2}.
b=\frac{x\left(x+1\right)}{2}
Divide -x^{2}+x^{4} by -2x+2x^{2}.
x^{2}-2xb+b^{2}=\left(x^{2}\right)^{2}-2x^{2}b+b^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-b\right)^{2}.
x^{2}-2xb+b^{2}=x^{4}-2x^{2}b+b^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}-2xb+b^{2}+2x^{2}b=x^{4}+b^{2}
Add 2x^{2}b to both sides.
x^{2}-2xb+b^{2}+2x^{2}b-b^{2}=x^{4}
Subtract b^{2} from both sides.
x^{2}-2xb+2x^{2}b=x^{4}
Combine b^{2} and -b^{2} to get 0.
-2xb+2x^{2}b=x^{4}-x^{2}
Subtract x^{2} from both sides.
\left(-2x+2x^{2}\right)b=x^{4}-x^{2}
Combine all terms containing b.
\left(2x^{2}-2x\right)b=x^{4}-x^{2}
The equation is in standard form.
\frac{\left(2x^{2}-2x\right)b}{2x^{2}-2x}=\frac{x^{4}-x^{2}}{2x^{2}-2x}
Divide both sides by -2x+2x^{2}.
b=\frac{x^{4}-x^{2}}{2x^{2}-2x}
Dividing by -2x+2x^{2} undoes the multiplication by -2x+2x^{2}.
b=\frac{x\left(x+1\right)}{2}
Divide -x^{2}+x^{4} by -2x+2x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}