Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-4\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+16}}{2}
Multiply -4 times -4.
x=\frac{-\left(-2\right)±\sqrt{20}}{2}
Add 4 to 16.
x=\frac{-\left(-2\right)±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2±2\sqrt{5}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{5}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{5}}{2} when ± is plus. Add 2 to 2\sqrt{5}.
x=\sqrt{5}+1
Divide 2+2\sqrt{5} by 2.
x=\frac{2-2\sqrt{5}}{2}
Now solve the equation x=\frac{2±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 2.
x=1-\sqrt{5}
Divide 2-2\sqrt{5} by 2.
x^{2}-2x-4=\left(x-\left(\sqrt{5}+1\right)\right)\left(x-\left(1-\sqrt{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1+\sqrt{5} for x_{1} and 1-\sqrt{5} for x_{2}.