Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-25=9^{2}x^{2}-784
Expand \left(9x\right)^{2}.
x^{2}-25=81x^{2}-784
Calculate 9 to the power of 2 and get 81.
x^{2}-25-81x^{2}=-784
Subtract 81x^{2} from both sides.
-80x^{2}-25=-784
Combine x^{2} and -81x^{2} to get -80x^{2}.
-80x^{2}=-784+25
Add 25 to both sides.
-80x^{2}=-759
Add -784 and 25 to get -759.
x^{2}=\frac{-759}{-80}
Divide both sides by -80.
x^{2}=\frac{759}{80}
Fraction \frac{-759}{-80} can be simplified to \frac{759}{80} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{3795}}{20} x=-\frac{\sqrt{3795}}{20}
Take the square root of both sides of the equation.
x^{2}-25=9^{2}x^{2}-784
Expand \left(9x\right)^{2}.
x^{2}-25=81x^{2}-784
Calculate 9 to the power of 2 and get 81.
x^{2}-25-81x^{2}=-784
Subtract 81x^{2} from both sides.
-80x^{2}-25=-784
Combine x^{2} and -81x^{2} to get -80x^{2}.
-80x^{2}-25+784=0
Add 784 to both sides.
-80x^{2}+759=0
Add -25 and 784 to get 759.
x=\frac{0±\sqrt{0^{2}-4\left(-80\right)\times 759}}{2\left(-80\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -80 for a, 0 for b, and 759 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-80\right)\times 759}}{2\left(-80\right)}
Square 0.
x=\frac{0±\sqrt{320\times 759}}{2\left(-80\right)}
Multiply -4 times -80.
x=\frac{0±\sqrt{242880}}{2\left(-80\right)}
Multiply 320 times 759.
x=\frac{0±8\sqrt{3795}}{2\left(-80\right)}
Take the square root of 242880.
x=\frac{0±8\sqrt{3795}}{-160}
Multiply 2 times -80.
x=-\frac{\sqrt{3795}}{20}
Now solve the equation x=\frac{0±8\sqrt{3795}}{-160} when ± is plus.
x=\frac{\sqrt{3795}}{20}
Now solve the equation x=\frac{0±8\sqrt{3795}}{-160} when ± is minus.
x=-\frac{\sqrt{3795}}{20} x=\frac{\sqrt{3795}}{20}
The equation is now solved.