Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-22x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 12}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 12}}{2}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-48}}{2}
Multiply -4 times 12.
x=\frac{-\left(-22\right)±\sqrt{436}}{2}
Add 484 to -48.
x=\frac{-\left(-22\right)±2\sqrt{109}}{2}
Take the square root of 436.
x=\frac{22±2\sqrt{109}}{2}
The opposite of -22 is 22.
x=\frac{2\sqrt{109}+22}{2}
Now solve the equation x=\frac{22±2\sqrt{109}}{2} when ± is plus. Add 22 to 2\sqrt{109}.
x=\sqrt{109}+11
Divide 22+2\sqrt{109} by 2.
x=\frac{22-2\sqrt{109}}{2}
Now solve the equation x=\frac{22±2\sqrt{109}}{2} when ± is minus. Subtract 2\sqrt{109} from 22.
x=11-\sqrt{109}
Divide 22-2\sqrt{109} by 2.
x^{2}-22x+12=\left(x-\left(\sqrt{109}+11\right)\right)\left(x-\left(11-\sqrt{109}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 11+\sqrt{109} for x_{1} and 11-\sqrt{109} for x_{2}.