Solve for x
x=10\sqrt{5}+20\approx 42.360679775
x=20-10\sqrt{5}\approx -2.360679775
Graph
Share
Copied to clipboard
x^{2}-20x-20x=100
Subtract 20x from both sides.
x^{2}-40x=100
Combine -20x and -20x to get -40x.
x^{2}-40x-100=0
Subtract 100 from both sides.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-100\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -40 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\left(-100\right)}}{2}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600+400}}{2}
Multiply -4 times -100.
x=\frac{-\left(-40\right)±\sqrt{2000}}{2}
Add 1600 to 400.
x=\frac{-\left(-40\right)±20\sqrt{5}}{2}
Take the square root of 2000.
x=\frac{40±20\sqrt{5}}{2}
The opposite of -40 is 40.
x=\frac{20\sqrt{5}+40}{2}
Now solve the equation x=\frac{40±20\sqrt{5}}{2} when ± is plus. Add 40 to 20\sqrt{5}.
x=10\sqrt{5}+20
Divide 40+20\sqrt{5} by 2.
x=\frac{40-20\sqrt{5}}{2}
Now solve the equation x=\frac{40±20\sqrt{5}}{2} when ± is minus. Subtract 20\sqrt{5} from 40.
x=20-10\sqrt{5}
Divide 40-20\sqrt{5} by 2.
x=10\sqrt{5}+20 x=20-10\sqrt{5}
The equation is now solved.
x^{2}-20x-20x=100
Subtract 20x from both sides.
x^{2}-40x=100
Combine -20x and -20x to get -40x.
x^{2}-40x+\left(-20\right)^{2}=100+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=100+400
Square -20.
x^{2}-40x+400=500
Add 100 to 400.
\left(x-20\right)^{2}=500
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{500}
Take the square root of both sides of the equation.
x-20=10\sqrt{5} x-20=-10\sqrt{5}
Simplify.
x=10\sqrt{5}+20 x=20-10\sqrt{5}
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}