Solve for x (complex solution)
x=10+\sqrt{470}i\approx 10+21.679483389i
x=-\sqrt{470}i+10\approx 10-21.679483389i
Graph
Share
Copied to clipboard
x^{2}-20x+570=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 570}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -20 for b, and 570 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 570}}{2}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-2280}}{2}
Multiply -4 times 570.
x=\frac{-\left(-20\right)±\sqrt{-1880}}{2}
Add 400 to -2280.
x=\frac{-\left(-20\right)±2\sqrt{470}i}{2}
Take the square root of -1880.
x=\frac{20±2\sqrt{470}i}{2}
The opposite of -20 is 20.
x=\frac{20+2\sqrt{470}i}{2}
Now solve the equation x=\frac{20±2\sqrt{470}i}{2} when ± is plus. Add 20 to 2i\sqrt{470}.
x=10+\sqrt{470}i
Divide 20+2i\sqrt{470} by 2.
x=\frac{-2\sqrt{470}i+20}{2}
Now solve the equation x=\frac{20±2\sqrt{470}i}{2} when ± is minus. Subtract 2i\sqrt{470} from 20.
x=-\sqrt{470}i+10
Divide 20-2i\sqrt{470} by 2.
x=10+\sqrt{470}i x=-\sqrt{470}i+10
The equation is now solved.
x^{2}-20x+570=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-20x+570-570=-570
Subtract 570 from both sides of the equation.
x^{2}-20x=-570
Subtracting 570 from itself leaves 0.
x^{2}-20x+\left(-10\right)^{2}=-570+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-570+100
Square -10.
x^{2}-20x+100=-470
Add -570 to 100.
\left(x-10\right)^{2}=-470
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{-470}
Take the square root of both sides of the equation.
x-10=\sqrt{470}i x-10=-\sqrt{470}i
Simplify.
x=10+\sqrt{470}i x=-\sqrt{470}i+10
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}