Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-20x+40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 40}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 40}}{2}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-160}}{2}
Multiply -4 times 40.
x=\frac{-\left(-20\right)±\sqrt{240}}{2}
Add 400 to -160.
x=\frac{-\left(-20\right)±4\sqrt{15}}{2}
Take the square root of 240.
x=\frac{20±4\sqrt{15}}{2}
The opposite of -20 is 20.
x=\frac{4\sqrt{15}+20}{2}
Now solve the equation x=\frac{20±4\sqrt{15}}{2} when ± is plus. Add 20 to 4\sqrt{15}.
x=2\sqrt{15}+10
Divide 20+4\sqrt{15} by 2.
x=\frac{20-4\sqrt{15}}{2}
Now solve the equation x=\frac{20±4\sqrt{15}}{2} when ± is minus. Subtract 4\sqrt{15} from 20.
x=10-2\sqrt{15}
Divide 20-4\sqrt{15} by 2.
x^{2}-20x+40=\left(x-\left(2\sqrt{15}+10\right)\right)\left(x-\left(10-2\sqrt{15}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10+2\sqrt{15} for x_{1} and 10-2\sqrt{15} for x_{2}.