Solve for x
x = \frac{\sqrt{145} + 11}{10} \approx 2.304159458
x=\frac{11-\sqrt{145}}{10}\approx -0.104159458
Graph
Share
Copied to clipboard
x^{2}-2.2x-0.24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2.2\right)±\sqrt{\left(-2.2\right)^{2}-4\left(-0.24\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2.2 for b, and -0.24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.2\right)±\sqrt{4.84-4\left(-0.24\right)}}{2}
Square -2.2 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2.2\right)±\sqrt{\frac{121+24}{25}}}{2}
Multiply -4 times -0.24.
x=\frac{-\left(-2.2\right)±\sqrt{5.8}}{2}
Add 4.84 to 0.96 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-2.2\right)±\frac{\sqrt{145}}{5}}{2}
Take the square root of 5.8.
x=\frac{2.2±\frac{\sqrt{145}}{5}}{2}
The opposite of -2.2 is 2.2.
x=\frac{\sqrt{145}+11}{2\times 5}
Now solve the equation x=\frac{2.2±\frac{\sqrt{145}}{5}}{2} when ± is plus. Add 2.2 to \frac{\sqrt{145}}{5}.
x=\frac{\sqrt{145}+11}{10}
Divide \frac{11+\sqrt{145}}{5} by 2.
x=\frac{11-\sqrt{145}}{2\times 5}
Now solve the equation x=\frac{2.2±\frac{\sqrt{145}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{145}}{5} from 2.2.
x=\frac{11-\sqrt{145}}{10}
Divide \frac{11-\sqrt{145}}{5} by 2.
x=\frac{\sqrt{145}+11}{10} x=\frac{11-\sqrt{145}}{10}
The equation is now solved.
x^{2}-2.2x-0.24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-2.2x-0.24-\left(-0.24\right)=-\left(-0.24\right)
Add 0.24 to both sides of the equation.
x^{2}-2.2x=-\left(-0.24\right)
Subtracting -0.24 from itself leaves 0.
x^{2}-2.2x=0.24
Subtract -0.24 from 0.
x^{2}-2.2x+\left(-1.1\right)^{2}=0.24+\left(-1.1\right)^{2}
Divide -2.2, the coefficient of the x term, by 2 to get -1.1. Then add the square of -1.1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2.2x+1.21=0.24+1.21
Square -1.1 by squaring both the numerator and the denominator of the fraction.
x^{2}-2.2x+1.21=1.45
Add 0.24 to 1.21 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-1.1\right)^{2}=1.45
Factor x^{2}-2.2x+1.21. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.1\right)^{2}}=\sqrt{1.45}
Take the square root of both sides of the equation.
x-1.1=\frac{\sqrt{145}}{10} x-1.1=-\frac{\sqrt{145}}{10}
Simplify.
x=\frac{\sqrt{145}+11}{10} x=\frac{11-\sqrt{145}}{10}
Add 1.1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}